Actions

Difference between revisions of "Dome Control"

From SharedSkies

(Software)
(Sirius Domes for CDK20N and CDK20S)
 
(12 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
The domes at Moore and Mt. Kent observatories have their own control systems designed to interface with the electromechanical hardware supplied by the dome manufacturer.  The esstential design elements  shared by all domes are
 
The domes at Moore and Mt. Kent observatories have their own control systems designed to interface with the electromechanical hardware supplied by the dome manufacturer.  The esstential design elements  shared by all domes are
 +
 
* Rotation encoder
 
* Rotation encoder
 
* Rotation motor controller
 
* Rotation motor controller
* Shutter status monitor
 
 
* Shutter motor controller
 
* Shutter motor controller
 
* Software connected to the telescope control system
 
* Software connected to the telescope control system
This page is a description of the dome control hardware and software highlighting similarities and differences between the systems for the two Sirius domes housing the CDK20's, the Ash dome for the RC24, and a refurbished dome for the CDK700.
+
 
 +
Additionally, some domes have environmental and shutter status monitors.
 +
 
 +
This page is a description of the dome control hardware and software highlighting similarities and differences between the systems for the various telescope enclosures at Moore and Mt. Kent observatories.
  
  
Line 20: Line 23:
 
== Software ==
 
== Software ==
  
Dome rotation  software has been written to use the INDI protocol and communicate with the telescope control software in an observatory operations package.   
+
Dome rotation  software has been written in C and Python to communicate with the telescope control software in an observatory operations package.  New code being developed also offers a connection to other processes through [http://hea-www.harvard.edu/RD/xpa/index.html XPA].
  
  
Line 28: Line 31:
 
More information is available on the Shared Skies [http://www.astro.louisville.edu/software/ software page].
 
More information is available on the Shared Skies [http://www.astro.louisville.edu/software/ software page].
  
== Sirius Dome for CDK20N ==
+
== Sirius Domes for CDK20N and CDK20S ==
  
The original Sirius electronics control dome rotation and the opening and closure of the upper and lower shutters.  The control board is proprietary, but its operation is determined by wiring to screw terminals that we have modified to connect to external systems.
+
The original Sirius electronics controls dome rotation and the opening and closure of the upper and lower shutters through manually operated switches.  The control board is proprietary, but its operation is determined by wiring to screw terminals that we have modified to connect to external digital systems. The common schematic for rotation and shutters at both sites is shown here:
  
  
 
<center>[[File:Sirius_dome_motor_schematic.jpg|400px]]</center>
 
<center>[[File:Sirius_dome_motor_schematic.jpg|400px]]</center>
  
 +
The dome rotation and each of the shutters has a similar relay board that is connected to the battery, solar charger, motor, and limit switches (for the shutter).  The boards have a 12-pin screw terminal connector that for the upper shutter has this wiring pattern:
  
This schematic shows a how a switch will apply 12 VDC power to one of two lines that select the direction of rotation, or similarly open or close the two shutters.  In computer controlled operation there is a relay system in parallel with the manual switch, such as shown here:
+
*1 black closed limit switch
 +
*2 red closed limit switch and brown wire to manual switch
 +
*3 black open limit switch
 +
*4 red open limit switch and yellow wire to manual switch
 +
*5 white common to manual switches
 +
*6
 +
*7 black motor
 +
*8 red motor
 +
*9 black battery
 +
*10 red battery
 +
*11 blue solar panel
 +
*12 brown solar panel
 +
 
 +
The open and closed limit switch wiring connectors are swapped on the lower shutter board.
 +
 
 +
A switch applies 12 VDC power to one of two lines that select the direction of rotation, or similarly open or close the two shutters.  In computer controlled operation there is a relay system in parallel with the manual switch, such as shown here:
  
  
Line 42: Line 61:
  
  
with the power for the relays provided by the "COM" 12 VDC power of the dome electronics.  Note that "COM" is not ground, but the common 12VDC from the battery power of the system. Fuses and circuit breakers protect the motors from overload, and the control board is designed so that most operations are safe.  In this respect, there are limit switches on the shutter motion that turn off power to the motors with the shutters are fully open or closed.  There is no hard-wired logic to insure that the lower shutter is closed before the upper shutter drops down over it, however.
+
with the power for the relays provided by the "COM" 12 VDC power of the dome electronics.  Note that "COM" is not ground, but the common 12VDC from the battery power of the system. Fuses and circuit breakers protect the motors from overload, and the control board is designed so that most operations are safe.  In this respect, there are limit switches on the shutter motion that turn off power to the motors when the shutters are fully open or closed.  There is no hard-wired logic to insure that the lower shutter is closed before the upper shutter drops down over it, however.
  
  
Line 50: Line 69:
 
<center>[[File:Cdk20 shutter relay box sm.jpg |600px]]</center>
 
<center>[[File:Cdk20 shutter relay box sm.jpg |600px]]</center>
  
 +
The relay box is hardwired to the dome rotation electronics, and may also be hardwired to the shutter electronics though a dropline to the rotating dome. The line falls at the perimeter of the dome and may sweep 180 degrees in either direction from south, largely free of obstruction.  However, the dropline is connected through an 8-pin Phoenix Contact connector that will pull apart if the cable is caught. the 8 wires in the dropline are color coded on both male and female sides of the Phoenix connector:
  
There is a dropline from the dome electronics to the relay box to allow the connection of the static relay system to the rotating domeThe line falls at the perimeter of the domeWhen the line is in use, software prohibits rotating the dome through azimuth 0 (shutter opening to the north) to lessen the chance of the cable snaggingThe dropline is connected through an 8-pin Phoenix Contact connector that will pull apart if the cable is caught.
+
*1  brown  p. 5 upper shutter relay board
 +
*2  red    p. 2 upper shutter relay board open limit switch
 +
*3  orange p. 4 upper shutter relay board closed limit switch
 +
*4 yellow p. 5 lower shutter relay board
 +
*5 green p. 4 lower shutter relay board closed limit switch
 +
*6  blue  p. 2 lower shutter relay open limit switch
 +
*7 black  p. 9 upper shutter relay board
 +
*8  white  no connection
 +
  
The relay box may be controlled by logic level electronics or by a web switch.  In the first generation of this system a National Instruments PCI-6518 digital logic controller with open collector logic was intalled in the telescope computer.  With the replacement of the computer in the fall of 2011 we changed operation to use a Digital-Loggers Web Din Relay shown here:
 
  
<center>[[File:Din2.jpg|600px]]</center>
 
  
 +
The master relay box is controlled by a Digital-Loggers Web Din Relay shown here:
 +
 +
<center>[[File:Din2.jpg|600px]]</center>
  
 
The device provides a robust configurable interface that enables web-based control of the dome shutters and rotation.  Since it runs its own internal server. interfacing with it is simple through TCP/IP over port 80.
 
The device provides a robust configurable interface that enables web-based control of the dome shutters and rotation.  Since it runs its own internal server. interfacing with it is simple through TCP/IP over port 80.
Line 74: Line 103:
  
 
This relay order  leaves a safe gap on the user interface between shutter and dome rotation.  It also avoids relay 3 which, on the module in the CDK20N dome, may have a high resistance contact.
 
This relay order  leaves a safe gap on the user interface between shutter and dome rotation.  It also avoids relay 3 which, on the module in the CDK20N dome, may have a high resistance contact.
 +
 +
== Sirius Shutter Control at CDK20S ==
 +
 +
At Mt. Kent the shutter control is wireless and utilizes a system designed by Dr. Rhodes Hart incorporating a solar-powered microcontroller.  The controller manages TCP/IP communications through a secure wireless network accessible to remote observers and to observatory control software. Since it is aware of the environment, and requires a heartbeat signal from the observatory watchdog program, it will automatically close the dome should communications or mains power failures occur.  It can be programmed to be aware of the rain and dew sensors as well.  Addtional details on this controller, which has been duplicated for use in all the enclosures at Mt. Kent, will be provided on another page.  Fundamentally it takes on the same role as the relay mirror used in the CDK20N dome, with the addition of monitoring for telescope safety.
 +
 +
 +
== RC24 Ash Dome ==
 +
 +
 +
The larger Ash dome enclosing  the Moore RC24 (MORC24)  telescope requires 220V power for rotation and for shutters.  The rotation control is through a DIN relay system and modular relays similar to that used for the Sirius domes, except the wiring  mimics a manual AC motor drum switch.  One relay sets direction and another relay toggles the mains power on and off.  The same pattern is used to open and close the shutter through a dropline.

Latest revision as of 00:13, 23 November 2014

The domes at Moore and Mt. Kent observatories have their own control systems designed to interface with the electromechanical hardware supplied by the dome manufacturer. The esstential design elements shared by all domes are

  • Rotation encoder
  • Rotation motor controller
  • Shutter motor controller
  • Software connected to the telescope control system

Additionally, some domes have environmental and shutter status monitors.

This page is a description of the dome control hardware and software highlighting similarities and differences between the systems for the various telescope enclosures at Moore and Mt. Kent observatories.


Rotation Encoder

We use an RFID tag encoder that senses tags attached to the inside perimeter of a dome. On the CDK20 Sirius domes, the tags are attached to the gear drive rail as shown here:

Cdk20 rfid head.jpg

The tags on CDK20N are 4 degrees apart. Each tag has a unique identifying code. When the dome rotates and brings a tag into the sensing space of a tag reader, software traps the tag event and identifies the dome azimuth angle based on a map of tags to angle that is saved for each dome.

The tag readers are from Phidgets, a company that makes USB-interfaced hardware for electronics hobbiest. They supply an OpenSource library that enables us to include the tag reader in the dome control software.

Software

Dome rotation software has been written in C and Python to communicate with the telescope control software in an observatory operations package. New code being developed also offers a connection to other processes through XPA.


  • PyDome scripted control interfaces with telescope and camera operations for automated dome tracking during long exposure sequences


More information is available on the Shared Skies software page.

Sirius Domes for CDK20N and CDK20S

The original Sirius electronics controls dome rotation and the opening and closure of the upper and lower shutters through manually operated switches. The control board is proprietary, but its operation is determined by wiring to screw terminals that we have modified to connect to external digital systems. The common schematic for rotation and shutters at both sites is shown here:


Sirius dome motor schematic.jpg

The dome rotation and each of the shutters has a similar relay board that is connected to the battery, solar charger, motor, and limit switches (for the shutter). The boards have a 12-pin screw terminal connector that for the upper shutter has this wiring pattern:

  • 1 black closed limit switch
  • 2 red closed limit switch and brown wire to manual switch
  • 3 black open limit switch
  • 4 red open limit switch and yellow wire to manual switch
  • 5 white common to manual switches
  • 6
  • 7 black motor
  • 8 red motor
  • 9 black battery
  • 10 red battery
  • 11 blue solar panel
  • 12 brown solar panel

The open and closed limit switch wiring connectors are swapped on the lower shutter board.

A switch applies 12 VDC power to one of two lines that select the direction of rotation, or similarly open or close the two shutters. In computer controlled operation there is a relay system in parallel with the manual switch, such as shown here:


Rotation control schematic.jpg


with the power for the relays provided by the "COM" 12 VDC power of the dome electronics. Note that "COM" is not ground, but the common 12VDC from the battery power of the system. Fuses and circuit breakers protect the motors from overload, and the control board is designed so that most operations are safe. In this respect, there are limit switches on the shutter motion that turn off power to the motors when the shutters are fully open or closed. There is no hard-wired logic to insure that the lower shutter is closed before the upper shutter drops down over it, however.


At the CDK20N we have a relay box mounted on the dome wall containing 6 socketed industrial relays with 12 VDC coils. The relays are wired such that the application of the "COM" voltage to a control line causes the relay to close with the same effect as the corresponding switch.


Cdk20 shutter relay box sm.jpg

The relay box is hardwired to the dome rotation electronics, and may also be hardwired to the shutter electronics though a dropline to the rotating dome. The line falls at the perimeter of the dome and may sweep 180 degrees in either direction from south, largely free of obstruction. However, the dropline is connected through an 8-pin Phoenix Contact connector that will pull apart if the cable is caught. the 8 wires in the dropline are color coded on both male and female sides of the Phoenix connector:

  • 1 brown p. 5 upper shutter relay board
  • 2 red p. 2 upper shutter relay board open limit switch
  • 3 orange p. 4 upper shutter relay board closed limit switch
  • 4 yellow p. 5 lower shutter relay board
  • 5 green p. 4 lower shutter relay board closed limit switch
  • 6 blue p. 2 lower shutter relay open limit switch
  • 7 black p. 9 upper shutter relay board
  • 8 white no connection



The master relay box is controlled by a Digital-Loggers Web Din Relay shown here:

Din2.jpg

The device provides a robust configurable interface that enables web-based control of the dome shutters and rotation. Since it runs its own internal server. interfacing with it is simple through TCP/IP over port 80.


Dome relay control.jpg


Each labelled relay controls a single normally open line, and connects to the dome 12 VDC system to switch on that function. The lines are color coded, and connected by a 9-wire cable that is terminated with a Phoenix Contact connector close to the DIN controller:

  • Rotate CW (decrease azimuth) - yellow to relay 1
  • Rotate CCD (increase azimuth) - brown to relay 2
  • Open Upper - orange to relay 7
  • Close Upper - green to relay 8
  • Open lower - blue to relay 5
  • Close lower - violet to relay 6

This relay order leaves a safe gap on the user interface between shutter and dome rotation. It also avoids relay 3 which, on the module in the CDK20N dome, may have a high resistance contact.

Sirius Shutter Control at CDK20S

At Mt. Kent the shutter control is wireless and utilizes a system designed by Dr. Rhodes Hart incorporating a solar-powered microcontroller. The controller manages TCP/IP communications through a secure wireless network accessible to remote observers and to observatory control software. Since it is aware of the environment, and requires a heartbeat signal from the observatory watchdog program, it will automatically close the dome should communications or mains power failures occur. It can be programmed to be aware of the rain and dew sensors as well. Addtional details on this controller, which has been duplicated for use in all the enclosures at Mt. Kent, will be provided on another page. Fundamentally it takes on the same role as the relay mirror used in the CDK20N dome, with the addition of monitoring for telescope safety.


RC24 Ash Dome

The larger Ash dome enclosing the Moore RC24 (MORC24) telescope requires 220V power for rotation and for shutters. The rotation control is through a DIN relay system and modular relays similar to that used for the Sirius domes, except the wiring mimics a manual AC motor drum switch. One relay sets direction and another relay toggles the mains power on and off. The same pattern is used to open and close the shutter through a dropline.