
DEVELOPMENT SPECIFICATION APOGEE INSTRUMENTS INC

1

Apogee Camera Control
Development Specification

Applicable to

AP, KX, LISAA, and SPH Series Imaging Cameras Using Xilinx
4000 and Spartan series FPGA Engines

Supporting Parallel Port, ISA and PCI Interfaces

Also compatible with some AM (QRX firmware), AX (Q firmware) series cameras

Specification Version 4.0

Revision Date: September, 2001

DEVELOPMENT SPECIFICATION APOGEE INSTRUMENTS INC

2

Disclaimer

Apogee Instruments Inc. assumes no liability for the use of the information contained in this document or the
software which it describes. The user assumes all risks. There is no warranty of fitness for a particular purpose,
either express or implied.

The information contained in this document is assumed to be correct, but in no event shall Apogee Instruments
Inc. be held responsible for typographical errors or changes in the software not reflected in this document.

The specifications contained in this document are subject to change without notice.

Support

The Apogee Camera Control development specification is provided as a courtesy to our customers, and comes
without warranty of fitness for any purpose or application. The user assumes all risk for the use of the information
contained in this document and the software it describes.

Copyright © 1997 – 2001 Apogee Instruments Inc.
All rights reserved.

All trademarks mentioned in this document are the property of their respective owners are used herein solely for
informational purposes only.

Apogee Instruments, Inc.
11760 Atwood Road, Suite #4
Auburn, CA 95603

(530) 888-0500
(530) 888-0540 FAX

DEVELOPMENT SPECIFICATION APOGEE INSTRUMENTS INC

3

1 Introduction___4
2 Hardware Interface___4

2.1 Firmware Behavior__4
2.1.1 Imaging Geometry ___ 4
2.1.2 Temperature Calculations ___ 7

2.2 Register Descriptions __7
2.2.1 Register Summary ___ 8
2.2.2 Reg_Command__ 9
2.2.3 Reg_Timer __ 11
2.2.4 Reg_VBinning ___ 12
2.2.5 Reg_AICCounter ___ 13
2.2.6 Reg_TempSetPoint ___ 14
2.2.7 Reg_PixelCounter __ 15
2.2.8 Reg_LineCounter ___ 16
2.2.9 Reg_BICCounter ___ 17
2.2.10 Reg_ImageData __ 18
2.2.11 Reg_TempData __ 19
2.2.12 Reg_Status __ 20
2.2.13 Reg_CommandReadback ___ 21

3 Camera Initialization Files__22
3.1 Parameters__22

3.2 Ranges and Defaults __23

4 Software Interface___24
4.1 ActiveX Driver __24

4.1.1 Properties ___ 25
4.1.2 Methods __ 27
4.1.3 Usage from Visual Basic ___ 28
4.1.4 Usage from Visual C++ __ 30
4.1.5 Usage from LabVIEW ___ 31

4.2 Generic Class Interface ___32

4.3 Architectural Notes___34
4.3.1 Read/Write Substitutions for Parallel Port Operation ___ 34

DEVELOPMENT SPECIFICATION APOGEE INSTRUMENTS INC

4

1 Introduction
This specification outlines the hardware and software functionality of the Apogee imaging cameras. The specification is
broken into three major sections: the Hardware Interface, Initialization Files, and the Software Interface.

The Hardware Interface details the firmware engine used to control Apogee camera systems. This includes an overview of the
register set and associated bit descriptions of registers. Behavioral models of the hardware are also discussed in this section.
For example, temperature control is now discussed in detail, and a more thorough description of the geometry variables used
during image readout is provided.

Initialization files are key to providing the bridge between the Hardware and Software components of the camera. It is
important to always properly configure the camera device to known safe state, before attempting any imaging operation. The
initialization files provide a list of parameters to set on the camera before using the device for the first time.

The section on the Software Interface explains the Apogee software architecture. A key component of this architecture is an
API library that is packaged as an ActiveX (COM) component. Apogee Instruments does provide source code support for the
camera systems. However, wherever possible, third party vendors are encouraged to the use the ActiveX DLL. The ActiveX
DLL provides probably the fastest method to producing a new imaging application. Furthermore, third party applications
using the DLL will find it easy to support any changes or updates that might occur in the future, because while the internal
implementation of the DLL functionality may change, the external interface will remain the same.

2 Hardware Interface

2.1 Firmware Behavior

2.1.1 Imaging Geometry
Pixels are processed and digitized according to specified geometry parameters. In order to discuss these rules and algorithms,
we will use the following definitions:

Parameter Definition
Columns Total physical count of columns on CCD device
Rows Total physical count of rows on CCD device
Image Columns (ImgCols) Number of columns within the Image Area (in unbinned pixels)
Image Rows (ImgRows) Number of rows within the Imaging Area (in unbinned pixels)
BIC Before Imaging Columns (BIC) count. Number of columns

before Image Area. Specified in .INI file.
AIC After Imaging Columns (AIC) count. Number of columns after

Image Area. Internally calculated value.
BIR Before Imaging Rows (BIR) count. Number of rows before

Image Area. Specified in .INI file.
AIR After Imaging Rows (AIR) count. Number of rows after Imag

Area. Internally calculated value.
SkipC Skip Columns. Number of columns to be digitized in the Image

Area, but not actually part of the Region of Interest (ROI).
Specified in .INI file.

SkipR Skip Rows. Number of rows to be digitized in the Image Area,
but not actually part of the Region of Interest (ROI). Specified in
.INI file.

DEVELOPMENT SPECIFICATION APOGEE INSTRUMENTS INC

5

The following picture may be useful for visualizing the geometry:

Physical CCD Device

Digitized Imaging Area

ROI

ImgCols AICBIC

ImgRows

BIR

AIR

SkipC

SkipR

Columns

Rows

Note in the image above that even though SkipC and SkipR are digitized pixels, they are not included as part of the final
image that is presented to an application by the driver. Also note that SkipC and SkipR are purely conventions used within
the driver. The hardware firmware has no knowledge of these parameters.

2.1.1.1 Horizontal Geometry Rules

BIC Digitized Imaging Area AIC

Horizontally, the firmware automatically processes an entire CCD row. Each row is comprised of three sections which vary
in size depending on the subframe location chosen. The first section is known as the “Before Imaging Columns” (BIC) and
represents the column offset leading to the digitized area of interest. The BIC is counted on a 1:1 basis regardless of other
binning parameters. For a full frame, the BIC value from the .INI file is used. The second section is the actual digitized
imaging area “pixel count”. The value loaded in the counter is based on groups of binned pixels. So if 100 columns within
the imaging area are being binned by a factor of 4, then a value of 100/4 = 25 would be loaded into the Pixel_count variable.
The third section is the “After Imaging Columns” (AIC) and represents the remaining columns of the physical CCD that still
require clocking. It is calculated using the “Columns” value from the .INI file as follows:

AIC = Columns (Specified in .INI) – BIC – “Unbinned (physical) Digitized Imaging Area pixels”

2.1.1.2 Horizontal Geometry examples:

INI files settings:
[geometry]
columns=530
imgcols=512
bic=4

a. For a full frame image binned 1:1, the values of BIC_count, Pixel_count and AIC_count are as follows;
BIC_count = 4 (from ini file)

DEVELOPMENT SPECIFICATION APOGEE INSTRUMENTS INC

6

Pixel_count = 512 (from ini file)
AIC_count = 530 – 4 – 512 = 14

b. For a sub-frame image 50 pixels wide located at a column offset= 100 ccd columns, binned 2:2:
BIC_count = 4 (from ini file) + 100 = 104
Pixel_count = 50 / 2 = 25
AIC_count = 530 – 104 – 50 = 376

That having been said, the horizontal and vertical binning factors loaded during the Expose method are based on the .INI file
setting “hflush=” and not the binning factors desired for the region of interest data. The Hflush and Vflush parameters were
designed to provide a different (higher) value of binning for flushing so that faster flush cycles were possible.

2.1.1.3 Vertical Geometry Rules

Row Offset
Initiated by Expose

Digitized Rows
Processed by GetImage

Remaining Rows
Processed by Flush

Since the Expose method causes the firmware to automatically skip (clock) to the region of interest after the exposure is
complete, the geometry and vertical binning for this skipped region (row offset) must be considered. The factors to be
considered are BIR and vflush binning in order to determine the proper value for line_count. In addition, a residual line_count
number is generated and passed to GetImage. This is explained below.

Line_count is based on unbinned rows, hence with a row offset of 4 with a vertical binning of 2 would result in a value of 4
being written to line_count. However, the complication comes apparent if the vertical binning used for the row offset exceeds
the row offset itself, or if the number of skipped rows is not evenly divisible by the vertical binning factor. These two cases
will be described as follows.

1. The vertical binning used for the row offset exceeds the row offset

The default vertical binning usedby the Expose method is based on “vflush=” from the INI file. If the number of offset rows
(BIR) is less then vflush, then the value of BIR should be used for binning and a value of BIR written to the line_counter.

2. If the number of skipped rows is not evenly divisible by the vertical binning factor

This will occur most of the time. In this case, the greatest possible number of binned rows are assigned to line_count, and the
remainder (m_ExposureRemainingLines) is passed to GetImage. GetImage will first skip the remainder before it does it’s
normal processing by setting the vertical binning = remainder and calling next_line one time.

2.1.1.4 Vertical Geometry Examples

INI files settings:
[geometry]
bir=4
vflush=8

a. For a full frame image, the values of vertical_binning and line_count are;

Vertical_binning = 4
Line_count = 1

DEVELOPMENT SPECIFICATION APOGEE INSTRUMENTS INC

7

Value of remaining_lines returned = 0

b. For a sub-frame image with a row offset of 150, the values of vertical_binning and line_count are;

Vertical_binning = 8 (from vflush INI setting)
Line_count = ((bir of 4) + (row offset of 150)) / 8 = 19 (rounded down)
Value of remaining_lines returned = 2

2.1.2 Temperature Calculations
The correct temperature setting values are derived from proper programming of the temperature setting registers. See the
register descriptions for specific details on calculating the correct register values.

Proper cooler operation involves setting the desired temperature, and then enabling the cooler operation. Once the set
temperature has been reached, R11.7 (At-temp) will go high. From this point forward, assuming no other changes to the
settings, the cooler can safely be assumed to be at the desired temperature setting. Some fluctuation may exist beyond this
point, which an application can take into account by conducting a rolling average of the temperature value. Again, please
note that there should be no expectation that once the set temperature has been reached, R11.7 will remain high consistently—
it is only to be used as an indication of the first time the set temperature was reached.

As noted above, because of temperature fluctuations, the temperature readings should be taken once or twice a second, with a
rolling average of 15 to 20 values used to derive the current temperature. An application can take the temperature reading
more frequently, but should not attempt more than eight readings per second (the number of times the temperature reading is
updated within the firmware itself).

The following table lists various states for the cooling system.

CommandReadback and Status Register Bits
Status String R11.4 R11.5 R11.6 R11.7 R12.8 R12.15

Cooler off X X X X X 0
Ramping to temp 0 0 0 0 0 1
Correcting 0 0 0 0* 0 1
Ramping to ambient X X 0 X 1 1
Ramp-up Complete X X 1 X 1 1
Max cooling limit 0 1 0 X 0 1
Min cooling limit 1 0 0 X 0 1
At temp 0 0 0 1 0 1

* Correcting can be assumed if R11.7 (at-temp bit) was once a one but now a zero. After temperature ramp down, keep track
of this bit in order to derive the “correcting” status. When first determining temp status following the opening of a camera,
“correcting” can be assumed, if no other status can be derived.

2.2 Register Descriptions
Apogee cameras are line-readout devices, not frame-capture cameras. No interrupts or DMA operations are used. This means
that the CCD data is read from the camera one line at a time, with polling to determine the camera states. Internal state control
logic in the camera head and/or the interface card handles camera status, exposure timing, row and column counting, flushing,
and temperature control. The driver is responsible for reading the correct number of rows from the camera and organizing the
resulting data for display and processing.

DEVELOPMENT SPECIFICATION APOGEE INSTRUMENTS INC

8

2.2.1 Register Summary
The firmware is organized as a group of twelve 16 bit registers. Eight registers can be written to with the following (note that
these registers can also be read from on PCI-based systems):

• Exposure time
• Horizontal and vertical binning
• Geometry information such as column offsets, #pixels per ROI, row offsets
• Desired Temperature
• Command bits which when toggled begin image acquisition, start/stop flushing, reset the system, or digitize and store

entire rows of image data.
• Misc. control bits

 Four 16 bit registers can be read from and contain the following data:

• Image data
• CCD Temperature
• Status bits used for temperature control and image readout
• Mirror of command register

Register Mnemonic Function
1 Reg_Command Command bits
2 Reg_Timer Timer bits 0-15
3 Reg_Vbinning Timer bits 16-20, Vertical Binning
4 Reg_AICCounter After Imaging Column (AIC), Test2 bits
5 Reg_TempSetPoint Desired Temperature, Digital port
6 Reg_PixelCounter Pixel Counter, Horizontal binning
7 Reg_LineCounter Line Counter, Mode bits
8 Reg_BICCounter Before Imaging Column (BIC), Test bits
9 Reg_ImageData 16 bit Image Data
10 Reg_TempData CCD Temperature
11 Reg_Status Status Register
12 Reg_CommandReadback Command bits (Register 1) mirror

DEVELOPMENT SPECIFICATION APOGEE INSTRUMENTS INC

9

2.2.2 Reg_Command

Register Number: 1

Access:
ISA/PPI PCI

Write Only Read/Write

Location (Offset from Base Address):
Interface Read Write

ISA/PPI N/A 0x0
PCI 0x20 0x0

Programming Notes:

None.

Register Description:
Bits

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Cooler
Enable

Cable
Length

Focus
Mode

Start
Flushing

Start
Next
Line

Timer
Load

Enable

Done
Reading

Cooler
Shut-
down

Shutter
Enable

Stop
Flushing

Trigger
Enable

FIFO
Cache

Reset
System

Shutter
Over-
ride

Start
Timer

TDI
Mode

Bit Function Usage
0 TDI Mode Enables drift scan operation (if camera firmware supports). If the firmware does not support

Drift Scan, this bit has no effect on camera operation.
1 Start Timer with

Offset
Transition this bit (1 to 0) to begin exposure, skip lines according to image row offset, and
digitize and store the first line of data in FIFO buffer.

2 Shutter Override Enabling this bit forces the shutter open. Disabling this bit has no effect on shutter control.
Note that the Shutter Override bit is not used in normal operation. Normal operation should
use bit 7 (Shutter Enable) to control shutter operation during an exposure.

3 Reset System Transition this bit (1 to 0) to reset firmware.
4 FIFO Cache Enable this bit during readout of an image line from the camera.
5 Trigger Enable Enables the start of an exposure from an external hardware trigger source. Disable this bit

when not using an external hardware trigger.
6 Stop Flushing Transition this bit (1 to 0) to discontinue flushing.
7 Shutter Enable 0 = Dark Frame or Bias; 1 = Shuttered Exposure.

Controls whether or not shutter is open while timer is active. Used to differentiate Dark and
Bias frames from Images and Flat Fields.

8 Cooler Shutdown Setting this bit will ramp the cooler to Ambient temperature at a controlled rate.
9 Done Reading Transition this bit (1 to 0) to indicate that the current line has been read.

10 Timer Load Enable Enable this bit while writing timer values to Reg2 and Reg3. After values are written,
transition this bit back to 0 in order to use the timer. (Timer does not function when the
Timer Load Enable bit is set.)

11 Start Next Line Transition this bit (1 to 0) to initiate next line acquisition. Used after initial Start Timer
command to read each successive line.

12 Start Flushing Transition this bit (1 to 0) to initiate flushing. Flushing causes the CCD to continuous readout
pixels, as if an image were being generated. This keeps the charge on the pixels to a
minimum.

13 Focus Mode Enabling this bit allows faster “lower quality” subframing. Use when speed is preferred over
image quality.

DEVELOPMENT SPECIFICATION APOGEE INSTRUMENTS INC

10

14 Cable Length 0 = Short Cable; 1 = Long Cable.
The following indicates appropriate values for cable length:

15 Cooler Enable Enables cooler operation. When enabled, the internal cooler control system will seek desired
temperature defined by Reg5. Disabling this bit causes the hardware to stop regulating
temperature control. The camera will eventually reach Ambient temperature. Note that this is
not the recommended method of turning off the cooler. For controller cooler shutdown, use
the “Cooler Shutdown” bit.

DEVELOPMENT SPECIFICATION APOGEE INSTRUMENTS INC

11

2.2.3 Reg_Timer

Register Number: 2

Access:
ISA/PPI PCI

Write Only Read/Write

Location (Offset from Base Address):
Interface Read Write

ISA/PPI N/A 0x2
PCI 0x24 0x4

Programming Notes:

The camera timer is a hardware timer, capable of measuring exposure duration to 0.01 second increments. The full timer is
20 bits wide, yielding a maximum exposure time of approximately 10,485.75 seconds or roughly 2.9 hours.

A camera reset is suggested before using the internal camera timer. The reset operation will insure that the camera is not
already running or in an unknown state when the timer values are loaded.

The timer is set by enabling bit 10 (Timer Load Enable) of the Command register (Reg_Command). The 20 bit timer value is
then written to Reg_Timer (lower 16 bits) and Reg_VBinning (upper four bits). Once those values are written, the Timer
Load Enable bit should be brought low. The timer will not function with the Timer Load Enable bit set high. Also, the Timer
will not be loaded with the correct timing value if the Timer Load Enable bit is not set before writing to the Reg_Timer and
Reg_VBinning registers.

For PCI camera operation, note that a read from this register will return the current value of the timer. If the timer is currently
in operation,it should not be assumed that the current value of the timer register is the original (set) value of the timer.

Register Description:
Bits

15 : 0
Timer [15 : 0]

Bits Function Usage
15:0 Timer The lower 16 bits of the camera’s internal 20 bit timer.

DEVELOPMENT SPECIFICATION APOGEE INSTRUMENTS INC

12

2.2.4 Reg_VBinning

Register Number: 3

Access:
ISA/PPI PCI

Write Only Read/Write

Location (Offset from Base Address):
Interface Read Write

ISA/PPI N/A 0x4
PCI 0x28 0x8

Programming Notes:

None.

Register Description:
Bits

15 : 14 13 : 8 7 : 4 3 : 0
Reserved Vertical Binning [5 : 0] Reserved Timer [19 : 16]

Bits Function Usage
3:0 Timer The upper four bits of the camera’s internal 20 bit timer.
7:4 Reserved Reserved for future use.

13:8 Vertical Binning Sets the Vertical Binning count to a value in the range 0-63.
15:14 Reserved Reserved for future use. (These bits may be used to set an 8 bit vertical binning value in

future products and/or firmware.)

DEVELOPMENT SPECIFICATION APOGEE INSTRUMENTS INC

13

2.2.5 Reg_AICCounter

Register Number: 4

Access:
ISA/PPI PCI

Write Only Read/Write

Location (Offset from Base Address):
Interface Read Write

ISA/PPI N/A 0x6
PCI 0x2C 0xC

Programming Notes:

None.

Register Description:
Bits

15 : 12 11 : 0
Test2 AIC Counter [11 : 0]

Bits Function Usage
11:0 AIC Counter Defines the number of columns to be skipped after the imaging columns in a subframe have

been digitized. The valid range of values is 1-4096, inclusive.
15:12 Test2 Defines special camera functions or configurations. Specified via .INI file, and loaded when

the device is initialized. Test2 bits are used for camera settings set at the Factory.

DEVELOPMENT SPECIFICATION APOGEE INSTRUMENTS INC

14

2.2.6 Reg_TempSetPoint

Register Number: 5

Access:
ISA/PPI PCI

Write Only Read/Write

Location (Offset from Base Address):
Interface Read Write

ISA/PPI N/A 0x8
PCI 0x30 0x10

Programming Notes:

This register is used for writing temperature data to the device. A conversion must be applied in order to write the correct
value, given a certain temperature specified in degrees Celsius. This conversion is determined by using a zero-point and scale
factor from the configuration file.

Given the following variables:
ZP = Zero-Point (Specified in .INI file)
T = Temperature in degrees Celcius (Desired temperature to set)
SF = Scale Factor (Specified in .INI file)
Value = Raw Temperature (Value we will write to the device)

We can determine the temperature in degrees Celsius using the following formula:

Value = ZP + (T * SF)

So, supposing we want to set a temperature of –10 degrees Celsius, and have specified a zero-point of 0x115 and a scale
factor of 2.5 in the .INI file, we get

Value = 0x115 + (-10 * 2.5) = 0x90

Register Description:
Bits

15 : 8 7 : 0
Relay Control Temperature Value

Bits Function Usage
7:0 Temperature Value Current temperature value, as determined from a set zero-point and scaling factor. An

application must convert this value into degrees Celsius.
15:8 Relay Control Relay control.

DEVELOPMENT SPECIFICATION APOGEE INSTRUMENTS INC

15

2.2.7 Reg_PixelCounter

Register Number: 6

Access:
ISA/PPI PCI

Write Only Read/Write

Location (Offset from Base Address):
Interface Read Write

ISA/PPI N/A 0xA
PCI 0x34 0x14

Programming Notes:

The pixel counter is a 12 bit counter. This defines the limit (4096) to the number of pixels which can be digitized by the
Apogee camera. Note that this does not include AIC or BIC pixels, only those pixels to be digitized. See the previous section
on hardware geometry parameters for more information.

Register Description:
Bits

15 14 : 12 11 : 0
Reserved Horizontal Binning Pixel Counter

Bits Function Usage
11:0 Pixel Counter Denotes the number of pixels to be digitized on a given line of the CCD.

14:12 Horizontal Binning Sets the Horizontal Binning count to a value in the range 1-8. (A value of “000” in these bits
is treated as a binning value of “1”)

15 Reserved Reserved for future use.

DEVELOPMENT SPECIFICATION APOGEE INSTRUMENTS INC

16

2.2.8 Reg_LineCounter

Register Number: 7

Access:
ISA/PPI PCI

Write Only Read/Write

Location (Offset from Base Address):
Interface Read Write

ISA/PPI N/A 0xC
PCI 0x38 0x18

Programming Notes:

None.

Register Description:
Bits

15 : 12 11 : 0
Mode Line Counter

Bits Function Usage
11:0 Line Counter The number of rows to be flushed before the Frame Done Status (Reg11.11) goes high.

15:12 Mode Defines special camera functions or configurations. Specified via .INI file, and loaded when
the device is initialized. Mode bits are used for camera settings set at the Factory

DEVELOPMENT SPECIFICATION APOGEE INSTRUMENTS INC

17

2.2.9 Reg_BICCounter

Register Number: 8

Access:
ISA/PPI PCI

Write Only Read/Write

Location (Offset from Base Address):
Interface Read Write

ISA/PPI N/A 0xE
PCI 0x3C 0x1C

Programming Notes:

The BIC count is always given in terms of unbinned pixels..

Register Description:
Bits

15 : 12 11 : 0
Test BIC Counter

Bits Function Usage
11:0 BIC Counter Defines the number of columns to be skipped before the imaging columns in a subframe have

been digitized. The valid range of values is 1-4096, inclusive.
15:12 Test Defines special camera functions or configurations. Specified via .INI file, and loaded when

the device is initialized. Test bits are used for camera settings set at the Factory

DEVELOPMENT SPECIFICATION APOGEE INSTRUMENTS INC

18

2.2.10 Reg_ImageData

Register Number: 9

Access:
ISA/PPI PCI

Read Only Read Only

Location (Offset from Base Address):
Interface Read Write

ISA/PPI 0x0 N/A
PCI 0x0 N/A

Programming Notes:

None.

Register Description:
Bits

15 : 0
16 bit Image Data

Bits Function Usage
15:0 Image Data 16 bit image data from a single pixel.

DEVELOPMENT SPECIFICATION APOGEE INSTRUMENTS INC

19

2.2.11 Reg_TempData

Register Number: 10

Access:
ISA/PPI PCI

Read Only Read Only

Location (Offset from Base Address):
Interface Read Write

ISA/PPI 0x2 N/A
PCI 0x4 N/A

Programming Notes:

This register is used for reading temperature data from the device. A conversion must be applied in order to convert the value
into degrees Celsius. This conversion is determined by using a zero-point and scale factor from the configuration file.

Given the following variables:
ZP = Zero-Point (Specified in .INI file)
T = Temperature in degrees Celcius (Unknown)
SF = Scale Factor (Specified in .INI file)
Value = Raw Temperature (Read from lower byte of this register)

We can determine the temperature in degrees Celsius using the following formula:

T = (Value – ZP) / SF

So, supposing we read a value of 0x90 from this register, and have specified a zero-point of 0x115 and a scale factor of 2.5 in
the .INI file, we get

T = (0x90 – 0x115) / 2.5 = -10 degrees Celsius

Register Description:
Bits

15 : 8 7 : 0
Reserved Temperature Value

Bits Function Usage
7:0 Temperature Value Current temperature value, as determined from a set zero-point and scaling factor. An

application must convert this value into degrees Celsius.
15:8 Reserved Reserved for future use.

DEVELOPMENT SPECIFICATION APOGEE INSTRUMENTS INC

20

2.2.12 Reg_Status

Register Number: 11

Access:
ISA/PPI PCI

Read Only Read Only

Location (Offset from Base Address):
Interface Read Write

ISA/PPI 0x6 N/A
PCI 0x8 N/A

Programming Notes:

None.

Register Description:
Bits

15 : 12 11 10 9 8 7 6 5 4 3 2 1 0
Reserved Frame

Done
Got

Trigger
Rsvd Rsvd At

Temp
Shut-
down
Done

Temp
Max

Temp
Min

Rsvd Cache
Read
OK

Line
Done

Expose
In

Progress

Bit Function Usage
0 Expose In Progress Bit is set to indicate that an exposure is in progress. While high, poll the Frame Done bit

(Reg11.11) to determine when the image is complete.
1 Line Done Bit is set when imaging line has been processed and is ready for readout.
2 Cache Read OK Unused in driver. Goes high when cached FIFOs will allow reading to begin on the next line.
3 Reserved Reserved for future use.
4 Temp Min Bit is set when the temperature cannot be driven more positive.
5 Temp Max Bit is set when the temperature cannot be driven more negative.
6 Shutdown Done Bit is set to indicates that a controlled cooler shutdown has finished. This is in response to

the “Cooler Shutdown” bit being set in the Command register (Reg1.8).
7 At Temp Indicates the point when the cooler has reached the desired temperature. Temperature can be

assumed to reach the set point the first time “At Temp” goes high (even if the bit subsequently
goes low).

8 Reserved Reserved for future use.
9 Reserved Reserved for future use.

10 Got Trigger Bit is set when an external trigger has been received.
11 Frame Done Bit is set when the number of rows indicated by the line counter (Reg_LineCounter (Reg7))

have been flushed.
15:12 Reserved Reserved for future use.

DEVELOPMENT SPECIFICATION APOGEE INSTRUMENTS INC

21

2.2.13 Reg_CommandReadback

Register Number: 12

Access:
ISA/PPI PCI

Read Only Read Only

Location (Offset from Base Address):
Interface Read Write

ISA/PPI 0x8 N/A
PCI 0x10 N/A

Programming Notes:

None.

Register Description:
Bits

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Cooler
Enable

Cable
Length

Focus
Mode

Start
Flushing

Start
Next
Line

Timer
Load

Enable

Done
Reading

Cooler
Shut-
down

Shutter
Enable

Stop
Flushing

Trigger
Enable

FIFO
Cache

Reset
System

Shutter
Over-
ride

Start
Timer

TDI
Mode

The description and usage of these bits is the same as for the Command (Reg_Command) register. Please see that register for
a detailed explanation of the bit fields.

DEVELOPMENT SPECIFICATION APOGEE INSTRUMENTS INC

22

3 Camera Initialization Files
The API uses a configuration file to identify all characteristics unique to a camera. This eliminates the need to change driver
or application software for each camera type. The industry standard .INI file format is used. It is assumed that the API or
application will never write over the .INI file. Any changes to .INI settings within an application using the API will be saved
elsewhere as defined by the application. The initialization file settings are not case sensitive. White space is allowed between
tokens. Values of “off/0/false” or “on/1/true” are equivalent. A complete list of all .INI parameters and their descriptions is
presented below.

3.1 Parameters
[system]
Interface Type of camera interface used
Base CCD Controller card base address
Reg_Offset Camera offset used for parallel port systems
PP_Repeat Delay used for parallel port systems
Cable Cable length
High_Priority Thread set to high priority when dowlonding image
Data_Bits Digitization resolution
Sensor Type of sensor (CCD/CMOS) for future use.
Mode Mode bits in decimal, determined by factory
Test Test bits in decimal, determined by factory
Test2 Test2 bits in decimal, determined by factory
Shutter_Speed Shutter time resolution (0.01 sec, 0.001 sec, dual)
Shutter_Bits Mode and Test bits to toggle for dual speed shutters. The Mode

mask is the low nibble, the Test mask is the high nibble.
MaxBinX Maximum horizontal binning factor
MaxBinY Maximum vertical binning factor
Guider_Relays Camera can output to guider relays
Timeout Maximum length of time the Frame Done bit is polled

[geometry]
Columns Total columns on CCD (physical)
Rows Total rows on CCD (physical)
ImgCols Unbinned columns in imaging area
ImgRows Unbinned rows count in imaging area
BIC Before image column count (dark, non-imaging pixels)
BIR Before image row count
SkipC Deleted data columns
SkipR Deleted data rows
HFlush Horizontal flush binning
VFlush Vertical flush binning

[temp]
Control CCD temperature can be controlled
Target CCD temperature set point
Cal Temperature calibration factor
Scale Temperature scaling factor

[ccd]
Sensor Type of sensor installed in camera
Color CCD sensor has color dyes
Noise Typical readout noise in e- units
Gain Typical camera gain in e-/ADU units
PixelXSize Size of pixels in horizontal diraction (in micrometers)
PixelYSize Size of pixels in vertical diraction (in micrometers)

DEVELOPMENT SPECIFICATION APOGEE INSTRUMENTS INC

23

3.2 Ranges and Defaults
N.B. Parameters prefixed by 0x or sufixed by an H are assumed to be hexadecimal. Parameters suffixed by .0 are assumed to
be floating point numbers. Decimal integer parameters can be used in their place.

Parameter Range Default
[system]
Interface ISA, PPI, PCI required
Base 0x000 - 0xFFF Required for PPI/ISA;

Ignored for PCI cameras
Reg_Offset 0x0 - 0xF0 0x0
PP_Repeat 1 - 1000 1
Cable short/long short
Data_Bits 8 - 18 16
High_Priority true/false true
Sensor CCD/CMOS CCD
Mode 0x0 – 0xF 0x0
Test 0x0 – 0xF 0x0
Test2 0x0 – 0xF 0x0
Shutter_Speed normal, fast, dual normal
Shutter_Bits 0x0 - 0xFF 0x0
MaxBinX 1 - 8 8
MaxBinY 1 - 255 63
Guider_Relays true/false false
Timeout 0.0 - 10000.0 2.0

[geometry]
Columns 1 - 65536 required
Rows 1 - 65536 required
ImgCols 1 - 4096 Columns – BIR - SkipR
ImgRows 1 - 4096 Rows – BIC - SkipC
BIC 1 - 4096 4
BIR 1 - 4096 4
SkipC 0 - 4096 0
SkipR 0 - 4096 0
HFlush 1 - 8 1
VFlush 1 - 255 1

[temp]
Control true/false true
Target -60 - +40 -10
Cal 1 - 255 160
Scale 1.0 - 10.0 2.1

[ccd]
Sensor Any text string -
Color true/false false
Noise Any floating point number 0.0
Gain Any floating point number 0.0
PixelXSize Any floating point number 0.0
PixelYSize Any floating point number 0.0

DEVELOPMENT SPECIFICATION APOGEE INSTRUMENTS INC

24

4 Software Interface
The Apogee camera drivers provide access to all camera functions through a straightforward ActiveX (COM Automation)
API. ActiveX is accessible from virtually any Windows programming or scripting language. The ActiveX driver resides in
the file Apogee.dll, which can be installed anywhere on the user’s system. Note, though, that the DLL must be registered with
the operating system (this is done by software installers automatically, or can be done manually via the command line
interface). Please see the installation README file for appropriate instruction on hardware and software installation of the
Apogee system.

For applications where it is desirable to directly compile the driver into the program, to modify the driver for custom
applications, or to use it under a different operating system, C++ source code has also been included. The interface for the
C++ version is similar to the ActiveX interface described in this document, but is not identical. Please see the section Generic
Class Interface for more information. Please note that the kernel-level driver must still be installed under Windows NT/2000.

4.1 ActiveX Driver
The ActiveX DLL can supply multiple Camera objects with an ICamera interface to any Windows application that can access
COM objects. This includes applications written in Visual Basic, Visual C++, Delphi, Visual Java, Visual Interdev and other
COM-aware languages, and scripting hosts such as Visual Basic for Applications, VBScript, JScript, PerlScript, Python etc.

The Apogee software stack for the ActiveX driver is illustrated below:

Camera Control Application

Apogee Camera Firmware/Hardware

ActiveX/COM Interface
(Apogee.DLL)

Windows 98/ME/2000
PCI Driver
(ApPCI.sys)

Windows NT 4.0/2000
ISA/PPI Driver and

Windows NT 4.0 PCI Driver
(ApogeeIO.sys)

Apogee ActiveX/COM Software Stack

Windows 98/ME
ISA/PPI Driver
(Apogee.DLL)

Note that PCI is only supported on Windows 98, Windows Millennium (ME), Windows NT 4.0, and Windows 2000. Apogee
PCI controller cards are not supported on Windows 95.

As stated previously, the ActiveX/COM interface provides a level of indirection for the software and driver components lower
in the stack. This allows the underlying Apogee architecture to change and grow, while still supporting previous products.
For example, an application written using the ActiveX interface for ISA or Parallel Port (PPI) designs does not require
changes or additions to support Apogee PCI controller cards.

Any API should be able to handle the requirements of a typical camera control application. A typical imaging session helps
show the required, basic components, and might be structured as follows:

DEVELOPMENT SPECIFICATION APOGEE INSTRUMENTS INC

25

• Initialize the camera with an .INI file
• Load desired geometry, temperature and configuration data using various the camera properties
• Call the Expose method
• Poll camera Status property
• When ready call the GetImage method
• Poll temperature and cooler status periodically

The Apogee ActiveX/COM architecture supports this functionality, plus additional features, via the ICamera interface. The
ICamera interface supports the following methods and properties.

4.1.1 Properties
The following table details the properties supported by the Apogee ActiveX driver.

Camera Settings
Variable R/W Data Type Notes

Status Read Only Short Returns current camera state
<0: Error codes
0: Idle
1: Waiting for trigger
2: Exposing
3: Downloading
4: Line ready
5: Image ready
6: Flushing BIR

Present Read Only Boolean Returns TRUE if camera present; FALSE otherwise
Shutter Read Only Boolean Returns TRUE if shutter is open; FALSE if closed
ForceShutterOpen R/W Boolean TRUE forces shutter to open; FALSE allows normal

shutter operation
Long Cable R/W Boolean Returns/Sets long cable mode
PPRepeat R/W Short Delay used on PPI camera systems
Mode R/W Short Lower four bits map to Mode bits used for special

camera functions or configurations
TestBits R/W Short Lower four bits map to Test bits used for camera

troubleshooting
Test2Bits R/W Short Lower four bits map to Test2 bits used for special

camera functions or configurations
DataBits Read Only Short Digitization Resolution (8-18)
SensorType Read Only Short Returns type of sensor used

0 or CCD: Charge Coupled Device
1 or CMOS: Complementary Metal-Oxide-Silicon

FastReadout R/W Boolean Returns/Sets fast readout mode for focusing
Use Trigger R/W Boolean Returns/Sets triggered exposure mode
TDI R/W Boolean Returns/Sets drift scan integration mode
MaxExposure Read Only Double Returns the maximum exposure duration
MinExposure Read Only Double Returns the minimum exposure duration
MaxBinX Read Only Short Returns the maximum horizontal binning factor
MaxBinY Read Only Short Returns the maximum vertical binning factor
GuiderRelays Read Only Boolean Returns TRUE if camera can output to guider relays;

FALSE otherwise

DEVELOPMENT SPECIFICATION APOGEE INSTRUMENTS INC

26

Timeout R/W Double Returns/Sets the maximum length of time the camera
Frame Done bit is polled

Cooler Settings
Variable R/W Data Type Notes

CoolerControl Read Only Boolean Returns TRUE if CCD temperature can be controlled;
FALSE otherwise

CoolerSetPoint R/W Double Returns/Sets the cooler set point temperature in
degrees Celcius

CoolerStatus Read Only Short Returns the current cooler status
0: Off
1: Ramp to set point
2: Correcting
3: Ramping to ambient
4: At ambient
5: Maximum cooling limit
6: Minimum cooling limit
7: At set point

CoolerMode R/W Short Returns/Sets the current cooler operation mode
0: Off (Shutdown immediately)
1: On (Enable Cooler; Go to set point temperature)
2: Shutdown (Ramp to Ambient, then Shutdown)

Temperature Read Only Double Returns the current temperature in degrees Celcius
TempCalibration R/W Short Returns/Sets the temperature calibration factor

(TempCelcius = (DAC units - Tcalibration) / Tscale)
TempScale R/W Double Returns/Sets the temperature scaling factor

(TempCelcius = (DAC units - Tcalibration) / Tscale)
Exposure Settings

Variable R/W Data Type Notes
BinX, BinY R/W Short Returns/Sets the horizontal and vertical binning

parameters
StartX, StartY R/W Short Returns/Sets the subframe start position in terms

of unbinned pixels
NumX, NumY R/W Short Returns/Sets the subframe size in binned pixels
Geometry Settings

Variable R/W Data Type Notes
Columns, Rows Read Only Short Returns the total number of physical columns or

rows on the CCD
SkipC, SkipR R/W Short Returns/Sets the number of deleted data columns

that are not to be displayed
Hflush, Vflush R/W Short Returns/Sets the horizontal and vertical flush

binning parameters
BIC, BIR R/W Short Returns/Sets the Before Imaging Columns/Rows

(dark non-imaging pixels)
CCD Settings

Variable R/W Data Type Notes
Sensor Read Only String Returns the sensor model installed in the camera

(I.e. "SITe 502)
Color Read Only Boolean Returns TRUE is CCD sensor has color dyes; FALSE

otherwise

DEVELOPMENT SPECIFICATION APOGEE INSTRUMENTS INC

27

Noise Read Only Double Returns the read-out noise in e-.
Gain Read Only Double Returns the gain in e-/ADU units
PixelXSize, PixelYSize Read Only Double Returns the size (X and Y) of the pixels in micrometers
Other

Variable R/W Data Type Notes
Image Read Only Variant Returns a 2D SAFEARRAY of type LONG (4 bytes

per element) or Integer (2 bytes per element) which
contains the image data. The type of data (LONG or
INT) returned is controlled by the associated property
of ConvertShortToLong

Line Read Only Variant Returns a 1D SAFEARRAY of type LONG (4 bytes
per element) or Integer (2 bytes per element) which
contains the image data. The type of data (LONG or
INT) returned is controlled by the associated property
of ConvertShortToLong

Snap Read Only Variant Combination of the Expose Method and Image
 (Duration as Double, Property. Blocks the calling thread for the duration
 Light as Boolean) of the exposure and readout.
ConvertShortToLong R/W Boolean Allows conversion of unsigned short (2 bytes per

element) image data to long (4 bytes per element) when
using the Image and Snap properties

OptionBase R/W Boolean Returns/Sets the array base index for the Image and
Snap properties. TRUE sets the base index to 1;
FALSE sets the base index to 0.

HighPriority R/W Boolean Returns/Sets whether the DLL thread is given high
priority during image download (I.e. GetImage, Image
and Snap).

4.1.2 Methods
The following table details the methods supported by the Apogee ActiveX driver.

System
Function Notes

Init Initializes internal variables to their default value and reads the
 (String iniFile, parameters in the specified INI file. If BaseAddress and RegOffset
 Short BaseAddress = -1, [Optional] parmeters are non-negative, then these values are used instead of
 Short RegOffset = -1, [Optional]) the INI settings for the BaseAddress and RegOffset properties.

Note that PCI operation does not depend on a BaseAddress being
specified. For PCI adapters, both the BaseAddress value in the INI
file, as well as the BaseAddress parameter passed into this
function, are ignored.
An exception is thrown if the camera cannot be initialized. The
error codes are:
0: No error detected
1: No config file (INI file) specified
2: Config missing or Config file missing required data
3: Loopback test failed; No camera detected
4: Memory allocation failed; System Error
5: NT I/O Driver not present

DEVELOPMENT SPECIFICATION APOGEE INSTRUMENTS INC

28

Reset() Resets the camera to an idle state. Terminates current exposure, if
exposure is in progress. Does not initiate flushing (use the
Flush() method).

Flush Starts flushing the camera (the camera should be in an idle
 (Short Rows = -1 [Optional]) state). If Rows is a non-negative number, only the specified number

of rows will be flushed. In this case, the method will return only
when the flushing operation is complete

AuxOutput Outputs "Value" to an auxillary output port (e.g. for driving
 (Byte Value) guider relays)
RegWrite Writes "Value" to the specified "Register". Registers 1-8 may be
 (Short Register, written to by the application.
 Short Value)
RegRead Reads from the specified "Register". The result of the read
 (Short Register, operation is placed into the "Value" variable.
 Short Value) Returns/Sets drift scan integration mode
FilterHome() Move the filterwheel to the home position. Failure indicates that

no filterwheel is attached or the filterwheel is broken.
FilterSlot Move the filterwheel to the position denoted by "Slot"
 (Short Slot)
Normal Exposure

Function Notes
Expose Takes an exposure of a specified Duration (in seconds). The
 (Double Duration, Light parameter controls the state of the shutter during the
 (Boolean Light) exposure. If Light is TRUE, the shutter opens. If Light is FALSE,

the shutter will close. This method returns immediately after
invocation. Poll the CameraStatus property to determine the start
time of a triggered exposure, and the end of an exposure.

GetImage Returns a pointer (pImageData) to unsigned short data in memory.
 (Long pImageData) The data will have (NumX * NumY) elements.
Drift Scan

Function Notes
DigitizeLine() Begins clocking and digitization of a single line of data. Poll the

CameraStatus property to determine when the data is ready for
download.

GetLine Returns a pointer (pImageData) to unsigned short data in memory.
 (Long pImageData) The data will have NumX elements.

4.1.3 Usage from Visual Basic
Accessing an ActiveX object from Visual Basic is very easy. Start Visual Basic and open the Project menu References
command. In the list you will see "Apogee Camera Control Library". Turn on the check box and click OK. Now in the
appropriate code section of a Form or Module enter the following:

4.1.3.1 Declaration and Initialization

Dim cam as Camera ‘Declare camera object
Set cam = New Camera ‘Create camera object
cam.Init “lisaa.ini” ‘Initialize camera

‘Now you can then access all Apogee camera functions directly; for example:

DEVELOPMENT SPECIFICATION APOGEE INSTRUMENTS INC

29

4.1.3.2 Managing Temperature Control

‘Initializing the temperature control subsystem

cam.SetPoint = 10 ‘Set target temperature in degrees C
cam.CoolerMode = 1 ‘Turn on cooler

‘Updating temperature status (polling)

stat = cam.CoolerStatus
temp = cam.Temperature ‘Poll temperature and status. Space polls at least 1 second

‘apart. Establish rolling average of temperature reads (16
‘samples) to reduce read noise.

‘Shutting down temperature control subsystem (controlled ramp-up)

cam.CoolerMode = 2

‘When ramp-up complete (by polling cam.Coolerstatus):

cam.CoolerMode = 0 ‘Turn controller off

‘Shutting down temperature control subsystem (hard shutdown). Only when really necessary.

cam.CoolerMode = 0

4.1.3.3 Take a normal exposure

cam.Expose 10, true ‘10 sec exposure with shutter open

do
loop until cam.Status = Camera_Status_ImageReady

Dim ImageData as Variant
ImageData = cam.Image
‘Can now access image data as a 2D array (i.e. ImageData(100, 100))

4.1.3.4 Take a dark frame

cam.Expose 10, false ’10 sec exposure with shutter closed

do
loop until cam.Status = Camera_Status_ImageReady

Dim ImageData as Variant
ImageData = cam.Image
‘Can now access image data as a 2D array (i.e. ImageData(100, 100))

4.1.3.5 Take a TDI (drift scan) exposure

Dim LineData(1 to NumLines) as Variant

cam.TDI = true
cam.Expose drift_rate, true ‘specify drift_rate in seconds

for i = 1 to NumLines
cam.DigitizeLine
do
loop until cam.Status = Camera_Status_LineReady
LineData(i) = cam.Line

Next

DEVELOPMENT SPECIFICATION APOGEE INSTRUMENTS INC

30

4.1.3.6 Take an externally triggered exposure

cam.UseTrigger = true
cam.Expose 10, true ’10 sec exposure with shutter open

do
loop while cam.Status = Camera_Status_Waiting
Print “Got Trigger”

do
loop until cam.Status = Camera_Status_ImageReady

Dim ImageData as Variant
ImageData = cam.Image
‘Can now access image data as a 2D array (i.e. ImageData(100, 100))

4.1.4 Usage from Visual C++
An ActiveX object can be accessed from Visual C++ in many ways. The following example is perhaps the simplest way,
taking advantage of VC++ wrapper classes.

// Import the type library to create an easy to use wrapper class
#import "apogee.dll" no_namespace

ICameraPtr cam; // Declare a smart pointer to the camera interface
HRESULT hr; // Return code from ActiveX methods

CoInitialize(NULL); // Initialize COM library

// Create the ActiveX object from the universally unique identifier
hr = cam.CreateInstance(__uuidof(Camera));
if (FAILED(hr)) return ErrorCode; // ErrorCode must be defined by the application

// Open the camera using an ini file
_bstr_t inifile(“lisaa.ini”);
hr = cam->Init(inifile, -1, -1);
if (FAILED(hr))
{

cam = NULL;
return hr & 0xFF;

}

// Access properties
short CameraXSize = cam->ImgColumns;
short CameraYSize = cam->ImgRows;

unsigned short* pBuffer = new unsigned short[CameraXSize * CameraYSize];
if (pBuffer == NULL)
{

cam = NULL;
return ErrorCode;

}

// Take a 10 sec exposure with the shutter open
if (FAILED(cam->Expose(10, true)))
{

delete [] pBuffer;
cam = NULL;
return ErrorCode;

}

while (true)
{ // Wait until the exposure is done and the image is ready

if (cam->Status == Camera_Status_ImageReady) break;
}

DEVELOPMENT SPECIFICATION APOGEE INSTRUMENTS INC

31

// Get the image
if (FAILED(cam->GetImage((long) pBuffer)))
{

delete [] pBuffer;
cam = NULL;
return ErrorCode;

}

delete [] pBuffer;
cam = NULL; // This will automatically release the ActiveX object

CoUninitialize(); // Close the COM library

4.1.5 Usage from LabVIEW
The Apogee ActiveX DLL can be used within LabVIEW, a graphical programming environment from National Instruments.
LabVIEW allows the user to control the camera system through the ActiveX DLL. Apogee does not provide an instrument
driver for LabVIEW beyond the Apogee ActiveX DLL.

The easiest way to invoke the ActiveX capabilities within LabVIEW is to use LabView as an Automation Client. In this
mode, LabVIEW acts as a client, and requests information from the Apogee ActiveX DLL, which is the automation server.

First, using your LabVIEW documentation, create an Automation Open Reference. This will allow the ActiveX DLL to be
opened. The Automation Reference requires the user to select an ActiveX class in order to operate properly. Choose the
option to "Select ActiveX Class" and look at the list of available ActiveX components on the machine. Note that it is not
usual for many components to be registered. Select the component labeled "Apogee Camera Control Library." If the
"Apogee Camera Control Library" is not present or shown as an ActiveX Class, then the Apogee.DLL has not been installed
properly. Please see your installation instructions for proper installation before continuing. Once the reference has been
opened, LabVIEW will refer to it in a shortened form, i.e. APOGEELib.ICamera.

The partial diagram below shows the Automation Open Reference for an ActiveX control, along with the selection of the
Apogee Camera Control Library (APOGEELib.ICamera).

Once the Automation Reference has been opened with the Apogee ActiveX camera control, you can use the Properties and
Methods available from the Automation Property Nodes and Automation Invoke Nodes. These Nodes also require an
associated ActiveX Class, which should also be set to the Apogee Control (APOGEELib.ICamera). Once this is done, select
the appropriate Method or Property you wish to use, and connect to the node to other LabVIEW components as appropriate.

The partial diagram below shows a Property Node (Present).

When finished with the Apogee ActiveX Control, make sure to complete operation with an Automation Close Reference.

The following diagram is a very simple LabVIEW virtual instrument, which opens an Automation Reference, initializes the
camera with the Init method, and then uses the Icamera interfaces to display Before Image Columns/Rows (BIC/BIR) and the
X and Y Binning values (BinX and BinY).

DEVELOPMENT SPECIFICATION APOGEE INSTRUMENTS INC

32

For more information regarding LabVIEW usage, as well as specifics of how to use LabVIEW as an Automation Client,
please see the documentation provided from National Instruments.

4.2 Generic Class Interface
Normally it is recommended that the included ActiveX driver be used. In cases where custom modification is required to the
driver, or ActiveX cannot be used (e.g. non-Microsoft operating systems), the source code can be compiled directly into your
application.

The "Apogee Driver Source" directory contains the source code. It has been developed under Microsoft Visual C++, but
should be portable to other environments with minimal modification.

Instead of an ActiveX interface, a set of C++ classes are available:

Interface Windows 95/98/ME Windows NT/2000
ISA CCameraIO_ISA_9x CCameraIO_ISA_NT
Parallel Port CCameraIO_PPI_9x CCameraIO_PPI_NT
PCI CCameraIO_PCI CCameraIO_PCI

These classes are all derived from the base class CCameraIO, which contains code that is common to all cameras. This is a
virtual class and cannot be created directly. Also note that the PCI control interface is not supported on Windows 95.

IC a m e ra

B in Y
B in Y

IC a m e ra

B in X

IC a m e ra

B IR

IC a m e ra

B IC

B in X

B IR

B IC

c :\ a p d riv e r\ in i\ a c tiv e x \ p c i\ k x1 e _ p c i. in i

e rro r in (n o e rro r)

-1

-1

A P O G E E L ib . IC a m e ra

IC a m e ra

R e g O ffse tR e g O ffse t

B a se A d d re ssB a se A d d re ss

in if ilein if ile

In itIn it

DEVELOPMENT SPECIFICATION APOGEE INSTRUMENTS INC

33

The following diagram illustrates the software stack for the C++ class interfaces:

Camera Control Application

Apogee Camera Firmware/Hardware

CCameraIO_PCI
(Derived from CCameraIO)

Windows
98/ME/2000
PCI Driver
(ApPCI.sys)

Windows NT 4.0/2000
ISA/PPI Driver
(ApogeeIO.sys)

Apogee Class Library Software Stack

CCameraIO_ISA
(Derived from CCameraIO)

CCameraIO_PPI
(Derived from CCameraIO)

CCameraIO
(Abstract Base Class)

Windows NT 4.0
PCI Driver

(ApogeeIO.sys)

Windows 98/ME
ISA Driver

(Apogee.DLL)

Windows 98/ME
PPI Driver

(Apogee.DLL)

The class interface is very similar but not identical to the ActiveX interface. Please review the CCameraIO.h header file for a
detailed explanation of the interface.

The ActiveX Init method is not part of the class interface since it instantiates the derived classes. A generic replacement
routine for the Init method, called InitCam is provided along with the actual helper functions (config_load, CfgGet, hextoi and
trimstr) called by the Init method to read from the INI file and set the camera default values. These routines can be found in
the Camera_Example.cpp file in the Apogee Driver Source directory.

DEVELOPMENT SPECIFICATION APOGEE INSTRUMENTS INC

34

4.3 Architectural Notes

4.3.1 Read/Write Substitutions for Parallel Port Operation

4.3.1.1 Settings

Parallel ports have particular settings, defined within the .INI initialization files.

4.3.1.1.1 Parallel port type (ECP verses standard Bi-directional)
For ECP ports, an additional port setup must be done in order to place the ECP port in standard bi-directional mode. It is
suggested to perform this step every time, since it will not hurt a bi-directional port. Prior to communication with the port, the
I/O must be converted to bi-directional mode by writing the following value to the port address (defined by .INI file): base +
0x402h, 0x034h.

4.3.1.1.2 PP_Repeat parameter
The “pp_repeat” function was created as a .INI file setting to allow for signal settling on long parallel port cables. This
function is used in the detailed sequences below to place a time space at critical points.

4.3.1.2 Usage

This API specification assumes that reads and writes are done to a single address. For parallel port operation where we allow
multiple cameras on the same parallel port, substitutions should be used to as a replacement to the read and write commands.
The following describes the operation of the parallel port interface. The parallel port operation requires a simple 8 bit bi-
directional bus. THERE ARE NO CHANGES TO CAMERA OPERATION BEYOND THE READ/WRITE
REPLACEMENT ROUTINES DESCRIBED HERE and base address/register locations.

The camera uses the port signals as follows;

Data Register (Port Base Address)

Bits 0-7 – 8 bit data to and from camera. All INP and OUTP instructions send 16 bit data to the registers via this
port. First Low byte and then High byte.

Control Register (Port Base Address + 2)

Bit 0 – Latch: Used to latch data to camera or bring data from camera.
Bit 1 – Select/Transfer: When high, data written to port selects a camera register. When low, data written to the
port makes data available to the selected register.
Bit 2 – Read/Write: When high, data is written to registers. When Low, data is read from registers.
Bit 3 – Low/High: Selects byte to be written or read. When low, high byte is selected. When high, low byte is
selected.
Bits 5 and 7 – Port Output Disable: When high, disables parallel port outputs and allows read functions.

The preceding port assignments are used in three routines. These include REGISTER_SELECT, INP AND OUTP. It is
assumed that unless explicitly stated, all bits not specifically changing are left at their previous value.

4.3.1.3 REGISTER_SELECT Description

Common to both the INP and OUTP functions, REGISTER_SELECT tells the camera which 16 bit register will be
operated on by the INP and OUTP instructions. It also identifies the camera on the bus as defined by the reg_offset parameter
in the .INI file (see INI file description). The firmware is preset for a particular offset on the parallel port bus. The
Register_select function always precedes a inp or outp function. The byte passed during a register select is defined as follows:

DEVELOPMENT SPECIFICATION APOGEE INSTRUMENTS INC

35

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Offset bit128 Offset bit64 Offset bit32 Offset bit16 Register bit3 Register bit2 Register bit1 Register bit0

Register values selected by the register_select function and described in the bitmap later in this document are as follows:

DATA(hex) REGISTER FUNCTION
x0 1 Misc Commands – write only
x2 2 Lower Timer – write only
x4 3 Upper Timer/Vbin – write only
x6 4 AIC Counter – write only
x8 5 Temp/Relay – write only
xa 6 Pixel Counter – write only
xc 7 Line Counter – write only
xe 8 BIC Counter – write only
x0 9 FIFO Data – read only
x2 10 Desired Temperature – read only
x6 11 Status Register – read only
x8 12 Register 1 Mirror – read only

Offset values selected by the register_select function and defined by the reg_offset command in the .INI file are as follows:

DATA(hex) FUNCTION
1x Reg_offset=16
2x Reg_offset=32
4x Reg_offset=64
8x Reg_offset=128

4.3.1.4 Detailed Parallel I/O sequences

4.3.1.4.1 Register_Select

a. Write the following bits to the control register (Base +2). C0=low, C1=high, C2=high, C3=high, C5=low, C7=low.
b. Write 8 bit camera register selection to Data port (Base Address). Valid values are:

Repeat “c” as many times as “pp_repeat=” specifies
c. Write the desired register_select bits to the control register (Base +2). C0=high

d. Write the following bits to the control register (Base +2). C0=low
e. Write the following bits to the control register (Base +2). C1=low.

4.3.1.4.2 OUTP

a. Write the following bits to the control register (Base +2). C0=low, C1=low, C2=high, C3=high, C5=low, C7=low.
b. Write low byte to Data port (Base Address).

Repeat “c” as many times as “pp_repeat=” specifies
c. Write the following bits to the control register (Base +2). C0=high

d. Write the following bits to the control register (Base +2). C0=low
e. Write the following bits to the control register (Base +2). C3=low
f. Write high byte to Data port (Base Address).

Repeat “g” as many times as “pp_repeat=” specifies
g. Write the following bits to the control register (Base +2). C0=high

DEVELOPMENT SPECIFICATION APOGEE INSTRUMENTS INC

36

h. Write the following bits to the control register (Base +2). C0=low

4.3.1.4.3 INP

a. Write the following bits to the control register (Base +2). C0=low, C1=low, C2=high, C3=high, C5=high, C7=high.
b. Write the following bits to the control register (Base +2). C2=low

Repeat “c” as many times as “pp_repeat=” specifies
c. Write the following bits to the control register (Base +2). C0=high

d. Read low byte from Data port (Base Address).
e. Write the following bits to the control register (Base +2). C0=low
f. Write the following bits to the control register (Base +2). C3=low

Repeat “g” as many times as “pp_repeat=” specifies
g. Write the following bits to the control register (Base +2). C0=high

h. Read high byte from Data port (Base Address).
i. Write the following bits to the control register (Base +2). C0=low,
j. Write the following bits to the control register (Base +2). C2=high
k. Write the following bits to the control register (Base +2). C3=high.

