
INDI 18 June 2007

Page 1 of 15

INDI: Instrument-Neutral Distributed Interface

Protocol Version 1.7

Document Version 1.3

© 2003-2007 Elwood Charles Downey

Abstract

A simple XML-like communications protocol is described for interactive and automated remote control of

diverse instrumentation. INDI is small, easy to parse and stateless. In the INDI paradigm each Device

poses all command and status functions in terms of setting and getting Properties. Each Property is a

vector of one or more named members. Each Property provides timing information about how it might be

sequenced with respect to other Properties to accomplish one coordinated action and provides hints as to

how it might be displayed for interactive manipulation in a GUI. Clients learn the Properties of a

particular Device at runtime using introspection. This decouples Client and Device implementation

histories. Devices have complete authority over whether to accept commands from Clients. INDI

accommodates intermediate servers, broadcasting, and connection topologies ranging from one-to-one on a

single system to many-to-many between systems of different genre. The INDI protocol can be nested

within other XML elements such as RTML to add constraints for automatic scheduling and execution.

Introduction

Modern astronomical instrumentation places high demand on its software infrastructure. Mounts, detectors and auxiliary

equipment have many control points and configurations vary greatly across facilities and over time, creating an atmosphere of

constantly changing software. Yet in the midst of this change users want consistent local and remote real-time access,

freedom to use their favorite computing platforms, and ways to participate in the creation and use of clever automated

scheduling techniques for efficient utilization of equipment and reduced operating costs. Keeping everything synchronized

involves at least significant configuration management effort if not completely new development projects as these factors

change.

This paper presents an architecture that eliminates the need for client software modifications when equipment or usage

patterns change. The key feature is a communication protocol which allows a facility to describe itself in terms of devices in

sufficient detail so they can be operated from a GUI for real-time command purposes or captured in a request file for later

automated execution. This dynamic discovery process means that, except for the lowest level device drivers, none of the

software components need to be rebuilt if and when the equipment being controlled changes. Conversely, clients may change

as often as desired because they are not tied to particulars of the instrumentation. All networking and file formats use a

simple subset of XML1 which promotes freedom of choice for implementation languages and operating systems at each part

of the system.

Other attempts involving XML for control purposes, such as AIML2, differ from INDI in that they use XML to describe

existing command and control channels. Our design uses XML directly for this purpose. Other attempts at capturing static

observing requests in a file in XML format, such as the evolving RTML3, intentionally restrict themselves to the control of

canonical instruments. This prevents scheduling instruments with functionality that differs from its standardized conceptual

framework without changing the standard. Our design captures commands for diverse and even esoteric instrumentation with

no changes in tools whatsoever.

Device driver

GUI Client

The simplest INDI configuration

INDi
protocol

Monster Scope

20010112134517 Slewing to RA 9:00:00.00
20010112134519 Slewing to Dec 10:00:00.00

Az 0..360 Degs EofN255:04:38.3 0:00:00.0
Alt 0..90 Degrees67:34:17.2 0:00:00.0
Dec -20..90 Degrees-2:14:56.2 10:00:00.0

RA 0..24 Hours7:23:05.12 9:00:00.00

Stop

Big-O Filter Wheel

20010112134001 Red filter in place
20010112134519 Going to H α filter

Filter Hα
Stop

instrument

INDi
Server

Device

Device

Device

Internet

Device

INDI with an intermediate Server

Device

INDI
Control

GUI

INDi
Daemon

INDi
Monitor

INDI 18 June 2007

Page 2 of 15

INDI Architecture

The diagram below represents the simplest possible INDI configuration: one Client connected to one Device:

An INDI Device offers a service cast as a set of Properties in the INDI format. An INDI Client is a process which connects

to an INDI Device, queries the Device for its set of control Properties and possibly send requests to change those Properties to

the Device. Final authority for all instrument control rests with the Device. A Client may be a GUI which presents each

command as a widget of some sort for displaying the current value of a command and possibly allowing the user to specify a

new target value. A Client may be a process which never sends any changes to the Device, but monitors and logs all changes

in Device state. A Client may be an automated command process that has an agenda of INDI commands and scans the agenda

and decides suitable times to send new commands to the Device.

INDI Clients and Devices need not be in direct contact. The protocol is designed to accommodate arbitration and broadcasting

among several Clients and Devices. For example, the diagram above shows an example of using an intermediary Server

between INDI Clients and Devices. To each Client it appears to be a Device. To each Device it appears to be a Client. Servers

can implement policies for administrative issues such as security, priority, graded access lists and other situations that arise

when multiple Clients are in contact with multiple Devices.

INDI Properties

Properties are vectors of one of a small set of types. Text properties are collections of arbitrarily ordered characters. Number

properties are numeric quantities and are sent with a printf-style format to recommend how a GUI should display them.

Switch properties are always in a state of On or Off. Rules may be imposed on the behavior of the switches in a vector such

as no more than one may be On at a time. Lights are properties that may be in one of the four states: Idle, OK, Busy or Alert.

If a GUI displays this the suggested corresponding colors are gray, green, yellow and red, respectively. BLOB properties hold

arbitrary binary large objects such as images.

INDI 18 June 2007

Page 3 of 15

Each Property has a name for identification purposes and a label for presentation purposes. Each element of the Property

vector also has a name, making it in effect an associative array, and a presentation label. Changes to a Property effect all

vector elements atomically.

All Property types except Lights have a permission attribute (lights are conceptually always read-only). Text and Number

may be Read-Only, Write-Only or Read-Write; Switches may be Read-Only or Read-Write. Permission terminology is with

respect to the Client but this does not bestow any true ability. Permission serves only as a hint to a Client as to whether a

Device is potentially willing to allow a Property to be changed. If a Device reports a Property to be Read-Only it still must not

trust the Client to comply but enforce the policy in case of rogue Clients that try to set a new value anyway. The permission

hints allow Clients to treat Property values in sensible ways. For example a GUI Client may display the Property in a way

that conveys whether it can be changed. For writable Properties, GUIs are encouraged to provide two fields: one that is

passive and displays the last value received, and one that is interactive in which the user may type or otherwise modify a

value without it being subject to spontaneous changes.

Each Property as a whole is always in one of four states: Idle, OK, Busy and Alert. If a GUI displays this in different colors,

the colors suggested are gray, green, yellow and red, respectively. A Device is strongly encouraged to send an accompanying

message whenever it informs a Client of a change of state. When a Client sends a command to change a Property, the Client

shall henceforth consider the Property state to be Busy. When the Device accomplishes the associated action it sends a

message that indicates the Property state has changed to, say, OK.

Each Property has a timeout value that specifies the worst-case time it might take to change the value to something else.

The Device may report changes to the timeout value depending on current device status. Timeout values give Clients a simple

ability to detect dysfunctional Devices or broken communication and also gives them a way to predict the duration of an

action for scheduling purposes as discussed later.

Properties may be assembled into groups to suggest how Clients might organize them, for presentation purposes for

example, but groups serve no functional purpose.

INDI Protocol

Each command between Client and Device specifies a Device name and Property name. The Device name serves as a

logical grouping of several Properties. Property names must be unique per Device, and a Server must report unique Device

names to any one Client.

The INDI protocol does not have the notion of query and response. A sender does not save context when it sends a command

and wait for a specific response. A command may be sent for which a complementary command back is likely but all INDI

participants must always be prepared to receive any command at any time. There is no notion of meta-errors such as illegally

formatted commands, inappropriate commands or problems with the underlying communication mechanism. The proper

response to all unusual or unexpected input is expressly to ignore any such problems (although some form of logging outside

the scope of INDI might be judicious). With these rules the INDI protocol is small and simple; defines-away the possibility of

deadlocks at the protocol level; automatically accommodates broadcasting; permits flexible and transparent routing; and

eliminates the need for complex sequencing and synchronization.

When a Client first starts up it knows nothing about the Devices and Properties it will control. It begins by connecting to a

Device or indiserver and sending the getProperties command. This includes the protocol version and may include the name

of a specific Device and Property if it is known by some other means. If no device is specified, then all devices are reported; if

no name is specified, then all properties for the given device are reported. The Device then sends back one deftype element

for each matching Property it offers for control, limited to the Properties of the specified Device if included. The deftype

element shall always include all members of the vector for each Property.

Note again that by sending a request for Property definitions the Client is not then waiting specifically for these definitions in

reply. Nor is the Device obligated to supply these definitions in any order or particular time frame. The Client may learn of

some Properties soon and perhaps others much later. The Client may also see messages for Properties about which it is as yet

INDI 18 June 2007

Page 4 of 15

unaware in which case the Client silently ignores the message. Thus a Client must have the ability to dynamically expand its

collection of Properties at any time and gracefully ignore unexpected information.

To inform a Device of new target values for a Property, a Client sends one newtype element. The Client must send all

members of Number and Text vectors, or may send just the members that change for other types. Before it does so, the Client

sets its notion of the state of the Property to Busy and leaves it until told otherwise by the Device. A Client does not poll to see

whether the current reported values happen to agree with what it last commanded and set its state back to Ok on its own.

This policy allows the Device to decide how close is close enough. The Device will eventually send a state of Ok if and when

the new values for the Property have been successfully accomplished according to the Devices criteria, or send back Alert if

they can not be accomplished with a message explaining why.

To inform a Client of new current values for a Property and their state, a Device sends one settype element. It is only

required to send those members of the vector that have changed. In the case of Properties whose values change rapidly, the

Device must insure that communication of the new values are not sent so often as to saturate the connection with the Client.

For example, a socket implementation might send a new value only if writing to the socket descriptor would not block the

process.

In order to allow for the likelyhood of requiring special efficiency considerations in the design of Clients to handle BLOB

Properties, the element enableBLOB allows a Client to specify whether setBLOB elements will arrive on a given INDI

connection. The Client may send this element with a value of Only, Also or Never. The default setting upon making a new

connection is Never which means setBLOB elements will never be sent over said connection. If the Client sends Only, from

then on only setBLOB elements shall be sent to the Client on said connection. If the Client sends Also, then all other

elements may be sent as well. A Client may send the value of Never at any time to return to the default condition. This flow

control facility allows a Client the opportunity, for example, to open a separate connection and create a separate processing

thread dedicated to handling BLOB data. This behavior is only to be implemented in intermediate INDI server processes;

individual Device drivers shall disregard enableBLOB and send all elements at will.

A Device may send out a message either as part of another command or by itself. When sent alone a message may be

associated with a specific Device or just to the Client in general. Messages are meant for human readers and should be sent

by a Device whenever any significant event occurs or target is reached. The INDI protocol syntax provides a means for a

Device to time stamp each message and is encouraged to do so to maintain consistent time across all its Clients. If the Device

does not include a time stamp for some reason (such as if it is a very simple device without local time-keeping capability) the

Client is encouraged to add its own time stamp.

A Device may tell a Client a given Property is no longer available by sending delProperty. If the command specifies only a

Device without a Property, the Client must assume all the Properties for that Device, and indeed the Device itself, are no

longer available.

One Device may snoop the Properties of another Device by sending the getProperties command. The command may specify

one Device and one Property, or all Properties for a Device or even all Devices, depending on whether the optional device and

name attributes are given. Once specified, all messages from the matching Devices and Properties will be copied to the

requesting Device as well.

Protocol Version Compatability

Version 1.7 added getProperties from Devices to add snooping functionality, and added the name attribute to getProperties

from Clients to increase specificity. These changes are compatable with all prior versions. There was no change in the Protocol

DTD itself from 1.5 to 1.6, just a clarification in the documentation regarding when all members of a vector must be

transmitted or just those members that changed. The only change from 1.4 to 1.5 is making the size attribute of the oneBLOB

element required instead of optional. Thus 1.5 Clients remain compatable with 1.4 Drivers in all respects if the Drivers

happened to transmit BLOB size. Version 1.4 is compatable with 1.3 in all respects except for incompatable changes in the

oneBLOB element. Version 1.3 is the same as 1.2 in all respects with the addition of the BLOB elements for transfering

binary data. Thus, 1.2, 1.3, 1.4 and 1.5 Clients and Drivers may be freely intermixed, to the extent they do not use BLOB

elements.

INDI 18 June 2007

Page 5 of 15

INDI XML Syntax Specification

This section defines the exact XML syntax of each INDI command and its behavior as part of the INDI protocol. A snippet of

annotated DTD is given for each command. This section ends with some examples.

The DTDs make use of the following Entities:

<!ENTITY % propertyState "(Idle|Ok|Busy|Alert)" >
<!ENTITY % switchState "(Off|On)" >
<!ENTITY % switchRule "(OneOfMany|AtMostOne|AnyOfMany)" >
<!ENTITY % propertyPerm "(ro|wo|rw)" >
<!ENTITY % numberValue "(#PCDATA)" >
<!ENTITY % numberFormat "(#PCDATA)" >
<!ENTITY % labelValue "(#PCDATA)" >
<!ENTITY % nameValue "(#PCDATA)" >
<!ENTITY % textValue "(#PCDATA)" >
<!ENTITY % timeValue "(#PCDATA)" >
<!ENTITY % groupTag "(#PCDATA)" >
<!ENTITY % BLOBlength "(#PCDATA)" >
<!ENTITY % BLOBformat "(#PCDATA)" >
<!ENTITY % BLOBenable "(Never|Also|Only)" >

All PCDATA shall use character set ISO 8651-14.

The format of a numberValue shall be any one of integer, real or sexagesimal; each sexagesimal separator shall be any one of

space(), colon (:) or semicolon (;); each sexagesimal component specified shall be integer or real; unspecified components shall

default to 0; negative values shall be indicated with a leading hyphen (-). For example, the following are all the same numeric

value: "-10:30:18", "-10 30.3" and "-10.505".

A numberFormat shall be any string that includes exactly one printf-style format specification appropriate for C-type double

or one INDI style "m" to specify sexagesimal in the form "%<w>.<f>m" where

 <w> is the total field width
 <f> is the width of the fraction. valid values are:
 9 -> :mm:ss.ss
 8 -> :mm:ss.s
 6 -> :mm:ss
 5 -> :mm.m
 3 -> :mm

For example:

 to produce use

 "-123:45" %7.3m
 " 0:01:02" %9.6m

A timeValue shall be specified in UTC in the form YYYY-MM-DDTHH:MM:SS.S. The final decimal and subsequent

fractional seconds are optional and may be specified to whatever precision is deemed necessary by the transmitting entity.

This format is in general accord with ISO 86015 and the Complete forms defined in W3C Note "Date and Time Formats"6.

Commands from Device to Client

In the following descriptions, permission is always with respect to the Client.

Command to enable snooping messages from other devices. Once enabled, defXXX and setXXX messages
for the Property with the given name and other messages from the device will be sent to this
driver channel. Enables messages from all devices if device is not specified, and all Properties
for the given device if name is not specified. Specifying name without device is not defined.
<!ELEMENT getProperties EMPTY >
<!ATTLIST getProperties

device %nameValue; #IMPLIED device to snoop, or all if absent
name %nameValue; #IMPLIED property of device to snoop, or all if absent

>

INDI 18 June 2007

Page 6 of 15

Define a property that holds one or more text elements.
<!ELEMENT defTextVector (defText+) >
<!ATTLIST defTextVector

device %nameValue; #REQUIRED name of Device
name %nameValue; #REQUIRED name of Property
label %labelValue; #IMPLIED GUI label, use name by default
group %groupTag; #IMPLIED Property group membership, blank by default
state %propertyState; #REQUIRED current state of Property
perm %propertyPerm; #REQUIRED ostensible Client controlability
timeout %numberValue; #IMPLIED worse-case time to affect, 0 default, N/A for ro
timestamp %timeValue #IMPLIED moment when these data were valid
message %textValue #IMPLIED commentary

>

 Define one member of a text vector
 <!ELEMENT defText %textValue >
 <!ATTLIST defText
 name %nameValue; #REQUIRED name of this text element
 label %labelValue; #IMPLIED GUI label, or use name by default
 >

Define a property that holds one or more numeric values.
<!ELEMENT defNumberVector (defNumber+) >
<!ATTLIST defNumberVector

device %nameValue; #REQUIRED name of Device
name %nameValue; #REQUIRED name of Property
label %labelValue; #IMPLIED GUI label, use name by default
group %groupTag; #IMPLIED Property group membership, blank by default
state %propertyState; #REQUIRED current state of Property
perm %propertyPerm; #REQUIRED ostensible Client controlability
timeout %numberValue; #IMPLIED worse-case time to affect, 0 default, N/A for ro
timestamp %timeValue #IMPLIED moment when these data were valid
message %textValue #IMPLIED commentary

>

 Define one member of a number vector
 <!ELEMENT defNumber %numberValue >
 <!ATTLIST defNumber
 name %nameValue; #REQUIRED name of this number element
 label %labelValue; #IMPLIED GUI label, or use name by default
 format %numberFormat; #REQUIRED printf-style format for GUI display
 min %numberValue; #REQUIRED minimal value
 max %numberValue; #REQUIRED maximum value, ignore if min == max
 step %numberValue; #REQUIRED allowed increments, ignore if 0
 >

Define a collection of switches. Rule is only a hint for use by a GUI to decide a suitable
presentation style. Rules are actually implemented wholly within the Device.
<!ELEMENT defSwitchVector (defSwitch+) >
<!ATTLIST defSwitchVector

device %nameValue; #REQUIRED name of Device
name %nameValue; #REQUIRED name of Property
label %labelValue; #IMPLIED GUI label, use name by default
group %groupTag; #IMPLIED Property group membership, blank by default
state %propertyState; #REQUIRED current state of Property
perm %propertyPerm; #REQUIRED ostensible Client controlability
rule %switchRule; #REQUIRED hint for GUI presentation
timeout %numberValue; #IMPLIED worse-case time, 0 default, N/A for ro
timestamp %timeValue #IMPLIED moment when these data were valid
message %textValue #IMPLIED commentary

>

 Define one member of a switch vector
 <!ELEMENT defSwitch %switchState >
 <!ATTLIST defSwitch
 name %nameValue; #REQUIRED name of this switch element
 label %labelValue; #IMPLIED GUI label, or use name by default
 >

Define a collection of passive indicator lights.
<!ELEMENT defLightVector (defLight+) >
<!ATTLIST defLightVector

device %nameValue; #REQUIRED name of Device
name %nameValue; #REQUIRED name of Property
label %labelValue; #IMPLIED GUI label, use name by default
group %groupTag; #IMPLIED Property group membership, blank by default
state %propertyState; #REQUIRED current state of Property
timestamp %timeValue #IMPLIED moment when these data were valid
message %textValue #IMPLIED commentary

>

INDI 18 June 2007

Page 7 of 15

 Define one member of a light vector
 <!ELEMENT defLight %propertyState >
 <!ATTLIST defLight
 name %nameValue; #REQUIRED name of this light element
 label %labelValue; #IMPLIED GUI label, or use name by default
 >

Define a property that holds one or more Binary Large Objects, BLOBs.
<!ELEMENT defBLOBVector (defBLOB+) >
<!ATTLIST defBLOBVector

device %nameValue; #REQUIRED name of Device
name %nameValue; #REQUIRED name of Property
label %labelValue; #IMPLIED GUI label, use name by default
group %groupTag; #IMPLIED Property group membership, blank by default
state %propertyState; #REQUIRED current state of Property
perm %propertyPerm; #REQUIRED ostensible Client controlability
timeout %numberValue; #IMPLIED worse-case time to affect, 0 default, N/A for ro
timestamp %timeValue #IMPLIED moment when these data were valid
message %textValue #IMPLIED commentary

>

Define one member of a BLOB vector. Unlike other defXXX elements, this does not contain an
initial value for the BLOB.

 <!ELEMENT defBLOB EMPTY >
 <!ATTLIST defBLOB
 name %nameValue; #REQUIRED name of this BLOB element
 label %labelValue; #IMPLIED GUI label, or use name by default
 >

Send a new set of values for a Text vector, with optional new timeout, state and message.
<!ELEMENT setTextVector (oneText+) >
<!ATTLIST setTextVector

device %nameValue; #REQUIRED name of Device
name %nameValue; #REQUIRED name of Property
state %propertyState; #IMPLIED state, no change if absent
timeout %numberValue; #IMPLIED worse-case time to affect a change
timestamp %timeValue #IMPLIED moment when these data were valid

message %textValue #IMPLIED commentary
>

Send a new set of values for a Number vector, with optional new timeout, state and message.
<!ELEMENT setNumberVector (oneNumber+) >
<!ATTLIST setNumberVector

device %nameValue; #REQUIRED name of Device
name %nameValue; #REQUIRED name of Property
state %propertyState; #IMPLIED state, no change if absent
timeout %numberValue; #IMPLIED worse-case time to affect a change
timestamp %timeValue #IMPLIED moment when these data were valid
message %textValue #IMPLIED commentary

>

Send a new set of values for a Switch vector, with optional new timeout, state and message.
<!ELEMENT setSwitchVector (oneSwitch+) >
<!ATTLIST setSwitchVector

device %nameValue; #REQUIRED name of Device
name %nameValue; #REQUIRED name of Property
state %propertyState; #IMPLIED state, no change if absent
timeout %numberValue; #IMPLIED worse-case time to affect a change
timestamp %timeValue #IMPLIED moment when these data were valid
message %textValue #IMPLIED commentary

>

Send a new set of values for a Light vector, with optional new state and message.
<!ELEMENT setLightVector (oneLight+) >
<!ATTLIST setLightVector

device %nameValue; #REQUIRED name of Device
name %nameValue; #REQUIRED name of Property
state %propertyState; #IMPLIED state, no change if absent
timestamp %timeValue #IMPLIED moment when these data were valid
message %textValue #IMPLIED commentary

>

Send a new set of values for a BLOB vector, with optional new timeout, state and message.
<!ELEMENT setBLOBVector (oneBLOB+) >
<!ATTLIST setBLOBVector

device %nameValue; #REQUIRED name of Device
name %nameValue; #REQUIRED name of Property
state %propertyState; #IMPLIED state, no change if absent
timeout %numberValue; #IMPLIED worse-case time to affect a change
timestamp %timeValue #IMPLIED moment when these data were valid
message %textValue #IMPLIED commentary

>

Send a message associated with a device or entire system.
<!ELEMENT message >

INDI 18 June 2007

Page 8 of 15

<!ATTLIST message
device %nameValue; #IMPLIED considered to be site-wide if absent
timestamp %timeValue #IMPLIED moment when this message was generated
message %textValue #IMPLIED commentary

>

Delete the given property, or entire device if no property is specified.
<!ELEMENT delProperty >
<!ATTLIST delProperty

device %nameValue; #REQUIRED name of Device
name %nameValue; #IMPLIED entire device if absent
timestamp %timeValue #IMPLIED moment when this delete was generated
message %textValue #IMPLIED commentary

>

Send a message to specify state of one member of a Light vector
<!ELEMENT oneLight %propertyState >
<!ATTLIST oneLight

name %nameValue; #REQUIRED name of this light element
>

Commands from Client to Device

Command to ask Device to define all Properties, or those for a specific Device or specific
Property, for which it is responsible. Must always include protocol version.
<!ELEMENT getProperties EMPTY >
<!ATTLIST getProperties

version %nameValue; #REQUIRED protocol version
device %nameValue; #IMPLIED name of Device, or all if absent
name %nameValue; #IMPLIED name of Property, or all if absent

>

Command to control whether setBLOB s should be sent to this channel from a given Device. They can
be turned off completely by setting Never (the default), allowed to be intermixed with other INDI
commands by setting Also or made the only command by setting Only.
<!ELEMENT enableBLOB %BLOBenable >
<!ATTLIST enableBLOB

device %nameValue; #REQUIRED name of Device
name %nameValue; #IMPLIED name of BLOB Property, or all if absent

>

Commands to inform Device of new target values for a Property. After sending, the Client must set
its local state for the Property to Busy, leaving it up to the Device to change it when it sees
fit.

<!ELEMENT newTextVector (oneText+) > send new target text values
<!ATTLIST newTextVector

device %nameValue; #REQUIRED name of Device
name %nameValue; #REQUIRED name of Property
timestamp %timeValue #IMPLIED moment when this message was generated

>

<!ELEMENT newNumberVector (oneNumber+) > send new target numeric values
<!ATTLIST newNumberVector

device %nameValue; #REQUIRED name of Device
name %nameValue; #REQUIRED name of Property
timestamp %timeValue #IMPLIED moment when this message was generated

>

<!ELEMENT newSwitchVector (oneSwitch+) > send new target switch states
<!ATTLIST newSwitchVector

device %nameValue; #REQUIRED name of Device
name %nameValue; #REQUIRED name of Property
timestamp %timeValue #IMPLIED moment when this message was generated

>

<!ELEMENT newBLOBVector (oneBLOB+) > send new target BLOBs
<!ATTLIST newBLOBVector

device %nameValue; #REQUIRED name of Device
name %nameValue; #REQUIRED name of Property
timestamp %timeValue #IMPLIED moment when this message was generated

>

Elements describing a vector member value, used in both directions.

One member of a Text vector
<!ELEMENT oneText %textValue >
<!ATTLIST oneText

name %nameValue; #REQUIRED name of this text element

INDI 18 June 2007

Page 9 of 15

>

One member of a Number vector
<!ELEMENT oneNumber %numberValue >
<!ATTLIST oneNumber

name %nameValue; #REQUIRED name of this number element
>

One member of a switch vector
<!ELEMENT oneSwitch %switchState >
<!ATTLIST oneSwitch

name %nameValue; #REQUIRED name of this switch element
>

One member of a BLOB vector. The contents of this element must always be encoded using base647.
The format attribute consists of one or more file name suffixes, each preceded with a period,
which indicate how the decoded data is to be interpreted. For example .fits indicates the decoded
BLOB is a FITS8 file, and .fits.z indicates the decoded BLOB is a FITS file compressed with
zlib9. The INDI protocol places no restrictions on the contents or formats of BLOBs but at
minimum astronomical INDI clients are encouraged to support the FITS image file format and the
zlib compression mechanism. The size attribute indicates the number of bytes in the final BLOB
after decoding and after any decompression. For example, if the format is .fits.z the size
attribute is the number of bytes in the FITS file. A Client unfamiliar with the specified format
may use the attribute as a simple string, perhaps in combination with the timestamp attribute, to
create a file name in which to store the data without processing other than decoding the base64.
<!ELEMENT oneBLOB %BLOBValue >
<!ATTLIST oneBLOB

name %nameValue; #REQUIRED name of this BLOB element
size %BLOBlength; #REQUIRED number of bytes in decoded and uncompressed BLOB
format %BLOBformat; #REQUIRED format as a file suffix, eg: .z, .fits, .fits.z

>

Example Messages from Device to Client

Define a read-write numeric field whose valid range is -100 to +100 in steps of 10, with initial value 50:

<defNumberVector device="OTA" name="Focus" state="Idle" perm="rw" timeout="50"
 label="Focus position, µM"
<defNumber name="Focus" label="" format="%4.0f" min="-100" max="100" step="10">50</defNumber>

</defNumberVector>

Define a read-write vector with two members, one for RA and one for Dec:

<defNumberVector device="Mount" name="EQUATORIALJ2000_COORD" state="Idle" perm="rw" timeout="50"
 label="J2000 Equatorial Position"
<defNumber name="RA" label="RA H:M:S" format="%11.8m" min="0" max="24">0</defNumber>
<defNumber name="Dec" label="Dec D:M:S" format="%9.6m " min="-90" max="90">0</defNumber>

</defNumberVector>

Define a collection of switches for various binning settings, default setting 2:1:

<defSwitchVector device="Camera" name="Binning" rule="OneOfMany" state="Ok" perm="w" timeout="0"
 label="Binning">

<defSwitch name="One" label="1:1">Off</defSwitch>
<defSwitch name="Two" label="2:1">On </defSwitch>
<defSwitch name="Three" label="3:1">Off</defSwitch>
<defSwitch name="Four" label="4:1">Off</defSwitch>

</defSwitchVector>

Define a set of lights that indicate the security level of several alarms around the building:

<defLightVector device="Building" name="Security" state="Ok" label="Building Alarms">
<defLight name="Front" label="Front door" >Ok</defLight>
<defLight name="Back" label="Back door" >Ok</defLight>
<defLight name="Dock" label="Loading dock">Ok</defLight>

</defLightVector>

Inform Client the current value of a switch has changed, assuming the switch rule was OneOfMany. Note how changes in

both switches are reported, the switch change from On to Off preceding the one from Off to On and the Property state set to

OK:

<setSwitchVector device="Camera" name="Binning" state="Ok" timestamp="2002-03-13T16:04:02"
message="Binning changed to 1:1">

<oneSwitch name="Two">Off</oneSwitch>
<oneSwitch name="One">On"</oneSwitch>

</setSwitchVector>

INDI 18 June 2007

Page 10 of 15

Send a generic system message:

<message timestamp="2002-03-13 12:00:00" message="It’s 12 o’clock and all is well." />

Send a progress message about a device named Camera:

<message device="Camera" timestamp="2002-03-13 16:06:20" message="TEC is approaching target
temperature" />

Inform Client that the loading dock security alarm has been tripped:

<setLightVector device="Building" name="Security" state="Alert">
 <oneLight name="Dock">Alert</oneLight>
</setLightVector>

Request copies from now on of the Property named Now from the Device Environment:

<getProperties device="Environment" name="Now" />

Example Messages from Client to Device

Inform Device of a new target value for a OneOfMany switch Property. Note how only the switch coming On is reported. The

Client sets its local notion of the Property state to Busy. The Device implements the "one of Many" discipline, not the Client.

The Device will send back the command to turn the other switch Off and set the state back to OK when the command has

been accomplished. This results in completely correct behavior and relieves the Client from being expected or even trusted to

do this.

<newSwitchVector device="Camera" name="Binning">
<oneSwitch name="Four">On</oneSwitch>

</newSwitchVector>

Send new target value for RA and Dec atomically:

<newNumberVector device="Mount" name="EQUATORIALJ2000_COORD">
 <oneNumber name="RA" >10:20:30</oneNumber>
 <oneNumber name="Dec">40:50:60</oneNumber>
</newNumberVector>

INDI Network Behavior

INDI is a session layer protocol. This means it presumes the existence of a reliable sequenced byte stream between each INDI

participant. The transport mechanism for the INDI protocol may be anything that satisfies these requirements. It might be

direct driver calls, local pipes, fifos, a UNIX socket, a TCP socket perhaps secured with SSL10 or tunneling through ssh11, or

the protocol might be the payload within a framework built upon P2P12, JXTA13, Jabber14, XML-RPC15 or SOAP16. If a

straight TCP/IP Socket implementation is used, the IANA17 has assigned INDI to tcp port 7624.

The following sections contain pseudocode that describe the required logic by which a player on an INDI network must

operate. This code does not in any way attempt to address the application being accomplished by the Client or the equipment

or service being operated by the Device. A key point to realize is conditions that arise that do not fit these templates, ie, the

missing else clauses, are legitimately ignored although perhaps prudently logged.

Client Processing

if receive <setXXX> from Device
 change record of value and/or state for the specified Property
if receive <defProperty> from Device
 if first time to see this device=
 create new Device record
 if first time to see this device+name combination
 create new Property record within given Device
if receive <delProperty> from Device
 if includes device= attribute
 if includes name= attribute
 delete record for just the given Device+name

INDI 18 June 2007

Page 11 of 15

 else
 delete all records the given Device
 else
 delete all records for all devices

if Client wants to learn all Devices and all their Properties
 send <defProperties>

if Client wants to change a Property value or state
 set State to Busy
 send <newXXX> with device, name and value

if Client wants to query a Property’s target value or state
 send <getTarValue> with device and name attributes

Device Processing

if receive <newXXX> from Client
 if element contains acceptable device, name and value
 set new target value and commence
if receive <getProperties> from Client
 if element contains recognized device
 send one <defProperty> for each name for specified device
 else if element contains no device attribute
 send one <defProperty for each name for each device
if any Property’s value changes, even as a result of a <newXXX>
 send <setXXX> specifying device+name with new value and state

Server Behavior Discussion

An INDI Server is really any processing steps involved with the transporting of INDI messages so long as it presents the

behavior of a Client to all Devices and a Device to all Clients. In its simplest form each command the Server receives from any

Device might be sent unaltered to all Clients and each command the Server receives from any Client is sent unaltered to all

Devices. The efficiency of this simple Server may be improved in several ways. An efficient server could send each command

received from a Client to only the Device known to be responsible for the device attribute in the command. The Server could

also snoop the getProperties commands from Clients and send setXXX commands only to Devices known to be interested.

An INDI Server might cache setXXX commands and use them to respond to getProperties commands without resorting to

extra Device queries (this is an important consideration when implementing scripting, described later).

INDI Servers must take special precautions to deal with large BLOB Properties. They must maintain and honor the

enableBLOB state for each Client connection. Servers are allowed to drop BLOBs if they arrive faster than slow recipients

can accept them. Servers must take care not to block while writing large BLOBs to slow Clients thus starving traffic to faster

Clients.

It is possible to imagine an INDI server that blocks a Client from sending newXXX messages, even to otherwise writable

Properties, based on an authentication strategy. This would open the possibility of a multiuser environment with some users

having more control ability than others, perhaps leaving lower priority users with only read-only visibility into the INDI

Properties at a facility.

It is possible to build INDI Servers such that they can be chained together, by virtue of the fact that Server-Device traffic is

(very nearly) the same as Client-Server traffic. Thus one Server could connect to another to gain access to a Device, rather

than run the Driver locally. This allows the INDI network to be distributed and take advantage of multiprocessing.

Servers might send all newXXX commands they receive from one Client connection to all other connected Clients. If Clients

choose to support receiving newXXX commands, they might interpret them to mean update the editable field of a writable

Property in the Client GUI. Thus, when both Client and Server support this activity, it allows Clients to mirror the commands

other Clients have issued.

Scripting

INDI Clients need not be GUI programs, they can also be command line programs. For example a program could be written to

get and display one or more INDI Properties specified on its command line. A program could set INDI Properties based on

INDI 18 June 2007

Page 12 of 15

command line arguments. A program could be written to accept a boolean expression of INDI Properties on its command line

then connect to an INDI server and wait for the Properties to cause the expression to evaluate to true. These sorts of

programs could be put together to perform complex functionality within the convenience of a scripting language.

Automatic Scheduled Operation with INDI

So far we have discussed using INDI to control a system in real-time. The INDI self-describing paradigm can also be used to

operate any system automatically. Two new XML elements are defined for the purposes of timing the actions performed. For

concreteness we discuss an automated telescope application.

Scheduling involves two more components:

• a GUI that displays the Devices and Properties of a site, adds target and constraint parameters and saves the entire

description to a request file;

• an INDI client serving as a scheduling dæmon that is in an infinite loop: scanning all requests to select the next

observation and communicating with the site Devices to accomplish the work.

The schedule preparation GUI could look very much like the real-time GUI, perhaps even be the same program. It certainly

shows each Device and Property in much the same way. But it also contains a second section which allows the user to define a

targeting scheme, timing requirements and to place constraints on the observation.

Observation timing might be specified as a particular Date and Time, or JD, with an acceptable error margin; be specified as

a cyclical event with reference, period and phase timing window specifications; or might not be specified at all and be left

totally up to the scheduler. Whichever way the time is decided, it serves to define the reference start time of the observation.

Other constraints might be a required such as maximum seeing spread or an acceptable range of Moon phase. In the former

case, the scheduler could know to ask the Device for the current value of a read-only property which reports the seeing from,

say, a DIMM18 device. In the latter case, the daemon consults its own lunar ephemeris and knowledge of the location of the

site.

To capture the timing of events comprising one observation, two more elements are added to the XML INDI protocol. An

INDI newtype command can be wrapped in a by element with an attribute t that specifies with respect to the start of the

observation the number of seconds the Property should achieve status OK. At runtime the Scheduler can determine the time

is takes to achieve a given target value using the timeout parameter for the Property.

An INDI newtype command can also be wrapped in an at element, also with an attribute t. This tells the scheduler Client

the exact moment when the newtype should be issued. It can be used with any Property but makes most sense when used

with ones whose timeout value is 0, for example a switch that takes no time to accomplish such as a camera shutter control.

The role of the Scheduler process is to keep the telescope busy. Whenever the telescope is not busy, the scheduler scans and

ranks all observing requests still to be performed. The ranking includes local circumstances such as hour angle and imminent

sun rise and set. Constraints are determined to be met by asking the Devices to report the current property values and status.

When a request is finally chosen, it is executed by simply issuing the INDI property commands exactly as they appear in the

file, timed according to their at or by attributes.

Operational specifications use the Devices and Properties for the observatory directly to record which commands are to be

issued for the observation. The schedular will cancel the observation if any of these return other than Busy or OK status

values. For read-only properties, the scheduler requires that the Devices return values that match those in the observation

request before choosing that observation to execute.

The following is an example of one observation request. Each of the Constraints were specified by the user in the Schedule

Builder GUI. The Operations were compiled using the exact Device and Property names returned to the Builder by the

Devices for which the schedule was built. Note the ability to specify different property values to occur at different times; in

this case, to implement a multiple exposure to determine the direction of any trailed objects in the image.

INDI 18 June 2007

Page 13 of 15

<INDIobservation>
<moon>

<minSeparation>20</minSeparation>
<maxPercentLit>10</maxPercentLit>

</moon>
<timing method="phase">

<phaseTiming>
<phaseZeroTime>2345678.901</phaseZeroTime>
<phasePeriod>3.45<phasePeriod>
<phaseMin>.3</phaseMin>
<phaseMax>.4</phaseMax>

</phaseTiming>
</timing>
<repeat>

<count>10</count>
<minSep>1</minSep>

</repeat>
 <INDI>

<by t="0">
<newNumberVector device="Monster Scope" name="EQUATORIALJ2000_COORD">
 <oneNumber name="RA">10:20:30</oneNumber>
 <oneNumber name="Dec">-4:5:6</oneNumber>
</newNumber>
<newTextVector device="OTA" name="Big-O Filters">
 <oneText name="setting">Red</oneText>
</newTextVector>

</by>
<at t="0">

<newSwitchVector device="Wonder Cam" name="Shutter">
 <oneSwitch name="open">On</oneSwitch>
</newSwitchVector>

</at>
<at t="10">

<newSwitchVector device="Wonder Cam" name="Shutter">
 <oneSwitch name="open">Off</oneSwitch>
</newSwitchVector>

</at>
<at t="20">

<newSwitchVector device="Wonder Cam" name="Shutter">
 <oneSwitch name="open">On</oneSwitch>
</newSwitchVector>

</at>
<at t="60">

<newSwitchVector device="Wonder Cam" name="Shutter">
 <oneSwitch name="open">Off</oneSwitch>
</newSwitchVector>

</at>
 </INDI>
 <Log>
 </Log
</INDIobservation>

As the Scheduler daemon executes each command for this request, the Log portion is filled in. Each entry in the Log is

timestamped in format ISO 8601. This forms a permanent record of all actions and results in behalf of this observation.

Summary

INDI Clients know nothing about the meaning of the Devices and Properties with which they deal and Devices know nothing

of how or why Clients are using their services. Devices present a standard protocol to all potential Clients, so they need only

be written one time (for a given operating system) and thus are defined by and move with their equipment and not with their

control programs. Clients control any Devices. A real-time GUI Client just displays Properties and lets the user change some

of them. A schedule-creation GUI displays the Properties and saves their target values to an XML file containing newtype

elements along with additional tags to define constraints and timing. A scheduler daemon reads the file and copies the tags

directly to the devices at the appropriate time.

Thus, GUIs, file formats and control daemons remain completely unchanged and drivers are only written once to be accessed

from anywhere making INDI truly an Instrument Neutral Distributed Interface.

INDI 18 June 2007

Page 14 of 15

Protocoll Revision

History

Changes

1.1 Initial release

1.2 Corrections

1.3 Add BLOBs

1.4 permit fraction seconds in timestamp; require encoding all BLOBs in base64

1.5 make size attribute in oneBLOB REQUIRED

1.6 clarify when to send all members of a vector or just those that changed

1.7 add getProperties message from Devices. Add name to getProperties from Clients.

Document Revision

History

Changes

1.1 Started separate document version after Protocol Rev 1.6

1.2 Fix typos, no substantive changes

1.3 Add description of drivers snooping via getProperties. Remove candidate

standardized property names.

1 http://www.w3.org/TR/2000/REC-xml-20001006

2 http://pioneer.gsfc.nasa.gov/public/aiml

3 http://monet.uni-sw.gwdg.de/twiki/bin/view/RTML/WebHome

4 http://www.htmlhelp.com/reference/charset/latin1.gif

5 http://www.cl.cam.ac.uk/~mgk25/iso-time.html

6 http://www.w3.org/TR/NOTE-datetime

7 http://www.faqs.org/rfcs/rfc2045.html §6.8, and sample code at http://www.fourmilab.ch/webtools/base64

8 http://fits.gsfc.nasa.gov

9 http://www.faqs.org/rfcs/rfc1951.html and http://www.zlib.org

10 http://home.netscape.com/eng/ssl3/draft302.txt, http://www.openssl.org

11 http://www.openssh.com

12 http://www.openp2p.com

13 http://www.jxta.org

14 http://www.jabber.org

15 http://xml-rpc.com

16 http://www.w3.org/TR/SOAP

17 http://www.iana.net

18 http://www.astro.washington.edu/rest/dimm

INDI 18 June 2007

Page 15 of 15

Resources

