
SBIG Universal Driver/Library
Version 4.43

January 11, 2005

Santa Barbara Instrument Group
147A Castilian Drive

Santa Barbara, CA 93117
Phn: (805) 571-7244 Fax: (805) 571-1147

 Web: <www.sbig.com> EMail: <sbig@sbig.com>

Santa Barbara Instrument Group Universal Driver Application Note

 Page 2

Table of Contents

1. Introduction ..4
2. Operating System Specific Instructions..5
2.1 Microsoft Windows ...5
2.2 Macintosh OSX ...5
2.3 Linux..6
3. Driver Interface ..6
3.1 Driver Related Commands...7

3.1.1 Open Driver ...7
3.1.2 Close Driver ...7
3.1.3 Open Device...7
3.1.4 Close Device...8
3.1.5 Get Driver Info...8
3.1.6 Get/Set Driver Handle..8

3.2 Exposure Related Commands ..9
3.2.1 Start Exposure..9
3.2.2 End Exposure ...10
3.2.3 Start Readout..11
3.2.4 Readout Line ..12
3.2.5 Read Subtract Line...13
3.2.6 Dump Lines ..13
3.2.7 End Readout...14
3.2.8 Get Line..14

3.3 Temperature Related Commands...14
3.3.1 Set Temperature Regulation...15
3.3.2 Query Temperature Status ...16

3.4 External Control Commands..16
3.4.1 Activate Relay ..16
3.4.2 Pulse Out..17
3.4.4 TX Serial Bytes...18
3.4.5 Get Serial Status...18
3.4.6 AO Tip Tilt ...18
3.4.7 AO Set Focus..18
3.4.8 AO Delay..18
3.4.9 CFW ...18

3.5 General Purpose Commands..20
3.5.1 Establish Link...20
3.5.2 Get CCD Info ...21
3.5.3 Get Turbo Status ..22
3.5.4 Query Command Status..23
3.5.5 Miscellaneous Control ...23
3.5.6 Update Clock..24
3.5.7 Read Offset ...24
3.5.8 Get US Timer..24
3.5.9 Set/Get IRQL ..24
3.5.10 Get Link Status ...24
3.5.11 Get Error String ...25
3.5.12 Set Driver Control..25
3.5.13 Get Driver Control ...26
3.5.14 USB AD Control...26
3.5.15 Query USB ...27
3.5.16 Get Pentium Cycle Count...27
3.5.17 RW USB I2C...28
3.5.18 Bit IO..28

4. Windows Based Utility Programs ...29
4.1 SBIGDriverChecker.exe ..29

Santa Barbara Instrument Group Universal Driver Application Note

 Page 3

4.2 EthSim.exe...29
4.3 SBIGUDRVJournalRx.exe ..29
4.4 SetClock.exe ..30
4.5 GetPortD.exe ...30
5. Supporting New Cameras and Accessories ..30
5.1 Supporting the ST-L ..30
5.2 Supporting the Single Shot Color Cameras ...31
5.3 Supporting the ST-402 Camera and CFW-402 Filter Wheel ...32
5.4 Supporting the CFW-10 Color Filter Wheel..32
6. Revision History ...32

Santa Barbara Instrument Group Universal Driver Application Note

 Page 4

1. Introduction
This document describes the software interface to Santa Barbara Instrument Group's Universal Driver
Library (SBIGUDRV). The SBIGUDRV driver supports all of SBIG’s Parallel, Ethernet and USB based
cameras and accessories. The driver/library is available for Microsoft Windows, Macintosh OSX1 and
Linux. Windows support is for the 32 bit Windows 952/98/Me/NT/2000/XP. The various development
kits and supplemental downloads may contain the following files:

SBIGUDRV.H - Use this include file with all programs calling the driver. It includes the function
prototype and many struct definitions for interfacing to the driver. You need to set the TARGET
variable based upon your target environment:

 Win 95/98/ME/NT/2000/XP – ENV_WIN
 Macintosh OSX – ENV_MACOSX
 Linux – ENC_LINUX
One of the things we do with our development is create an LSBIGUDRV.H file where we set
TARGET and then include the SBIGUDRV.H file. By including LSBIGUDRV.H instead of
SBIGUDRV.H you can replace the SBIGUDRV.H file when it gets revised without having to
edit it every time to reset the TARGET.

SBIGUDRV.LIB - This is an import library that you link with your 32 bit Windows program.
Include this in your "project" file.

Windows Development Kit – Contains everything you need to start developing software for the
Windows platform including the Windows Tool described below.

Mac OSX Development Kit – Contains a USB driver installation package. Running the installer
package installs the USB drivers and a Framework that implements the Universal Driver.

Linux Development Kit – Contains a gzipped tar archive with the Universal Driver as a shared
library and low-level Parallel Port and USB drivers.

SBIG Driver Checker/Installer – This is an installer for a Windows utility program that checks the
drivers installed on a system against the latest drivers in its SBIG Drivers directory. A complete
description is in Section 3. The drivers installed include:

SBIGUDRV.DLL - This is a 32 bit Windows DLL. It is built with the “stdcall” calling
convention, which means it can be called from Visual C++ or Visual Basic.

SBIGUDRV.VXD - This is a protected mode low-level parallel port driver for 32 bit Windows
95/98/Me that is used in conjunction with parallel port cameras and the SBIGUDRV.DLL.

SBIGUDRV.SYS – This is a low-level parallel port driver for Windows NT/2000/XP that is used
in conjunction with parallel port cameras and the SBIGUDRV.DLL.

SBIGUSBE.SYS, SBIGULDR.SYS, SBIGLLDR.SYS, SBIGFLDR.SYS – These files are the
low-level USB driver and firmware loaders for USB based cameras. Please refer to the
“Installing USB.PDF” Application Note for how to install these drivers.

SBIGUSBE.INF – This is the USB driver information file.
\Tools – This directory contains some Windows utility programs that will help you get your custom

program up and running with the SBIG Universal Driver/Library. See section 3 for a description
of each of these tools.

Visual C++ Sample Program – Includes a sample Visual Studio 6 project.
Visual Basic Sample Programs – Includes some sample Visual Basic programs.
SBIG C++ Sample Classes – Includes sample source code for CSBIGCamera and CSBIGImage

classes.

1 Macintosh OSX does not support parallel port based cameras as these ports do not exist in the Mac world. Users with

Parallel Port based cameras can use their cameras on Ethernet equipped Macs with OSX by using SBIG’s optional Ethernet
to Parallel (E2P) Adapter.

2 There is no support for USB based cameras under Windows 95 or NT.

Santa Barbara Instrument Group Universal Driver Application Note

 Page 5

2. Operating System Specific Instructions
This section contains Operating System specific instruction on how to install the drivers and how to
build projects that include the SBIG Universal Driver Library.

2.1 Microsoft Windows
SBIG provides the SBIG Driver Checker utility for installing the USB and Parallel port drivers under
Windows. This process is documented in the “Installing USB.pdf” file in the DOCS directory. It’s
critical under Windows that you install the drivers correctly. Please follow that document to the letter.
Once the drivers have been installed it’s a good idea to run SBIG’s CCDOps software to make sure you
can talk to your camera. If you don’t have CCDOps you can download it from our web site. This will
confirm the proper driver installation and insure your camera is working correctly.
 Once the drivers are installed and your camera is working follow the instructions below to add
the SBIG Universal Driver to your software project:

Visual C

• Include the SBIGUDRV.H (or LSBIGUDRV.H) file in your C/C++ files that need to call the
driver to get the function prototype, enumeration declarations and struct definitions.

• Add the SBIGUDRV.LIB file to your project so your project will link with the SBIGUDRV.DLL
that was installed into the \Windows\System directory

Visual BASIC

• Add the SBIGTypes.bas file to your Visual Basic project for the function declaration,
enumeration declarations and type definitions.

• Note that Visual BASIC has no unsigned types so pixel data which the driver treats as an
unsigned short (values 0 to 65535) but Visual BASIC treats as signed (values –32768 to 32767)
will have to be converted to long. Signed values 0 to 32767 convert directly whereas signed
values –32768 to –1 convert to 32768 to 65535 respectively. Thus negative signed short pixel
values convert to signed long values by “signed long = 65536 – signed short”.

2.2 Macintosh OSX
SBIG provides the SBIG Driver Installer.pkg for installing the low-level USB drivers and the SBIG
Universal Driver Framework. Double click this file to install the drivers and library. Once the drivers
have been installed it’s a good idea to run SBIG’s CCDOps Lite for OSX software to make sure you can
talk to your camera. If you don’t have CCDOps Lite you can download it from our web site. This will
confirm the proper driver installation and insure your camera is working correctly.

Once the drivers are installed and your camera is working with CCDOps Lite add:

#include <SBIGUDrv/sbigudrv.h>

to any source code that calls the SBIG Universal Driver Library to bring in the enumerations, struct
definitions and function prototype. Also add to the project the:

/Library/Frameworks/SBIGUDrv.framework

framework file to get the program to link.

Santa Barbara Instrument Group Universal Driver Application Note

 Page 6

2.3 Linux
Please see the README.txt file included in the Linux Development kit for detailed instructions on how
to install the SBIG Universal Driver Library on your Linux system.

3. Driver Interface
The software interface to the Universal Driver Library is through single external function that takes a
short integer Command and pointers to command Parameter and command Results structs. The driver
acts upon the Command and Parameters struct and fills in the Results struct. The memory allocation
for these structs is the responsibility of the calling program.

The C prototype for the function is shown in the SBIGUDRV.H file and takes the form:

short SBIGUnivDrvCommand (short Command, void *Parameters, void *Results)

where Command is the command to be executed and Parameters and Results are pointers to the
structs. The function returns an error code indicating whether the camera was able to initiate or
complete the command. Note that enumerated types exist in the SBIGUDRV.H file for the Command
(PAR_COMMAND) and function return result (PAR_ERROR) as well as many of the fields in the
various Parameters and Results structs.

The commands supported by the driver are grouped into the following sections discussed
individually below:

• Driver Related Commands
• Exposure Related Commands
• Temperature Related Commands
• External Control Commands
• General Purpose Commands

Getting back to the driver, it is written and documented assuming you are programming and proficient in
C. As you can see, the function prototype is a C function (not C++), and as you will see the Parameters
and Results parameters will end up being pointers to structs using the following data types within the
structs:

LOGICAL - unsigned short (2 bytes) with 0 = FALSE and 1 = TRUE
enum - Enumerated unsigned short (2 bytes) with an allowed set of values
short - signed short (2 bytes)
ushort - unsigned short (2 bytes)
long - signed long (4 bytes)
ulong - unsigned long (4 bytes)

Some commands don't require Parameters structs and some don't require Results structs. In those cases
you should pass a NULL pointer to the driver.

The supported commands are discussed in the sections below. For each command the Parameters and
Results structs are shown except in the case where one or both do not exist. The function error return
codes for each of the commands will vary from command to command.

For each command that doesn’t operate immediately, a command status is maintained internally by the
driver, and can be monitored with the Query Command Status command. The command status for

Santa Barbara Instrument Group Universal Driver Application Note

 Page 7

each of the commands varies from command to command but in general will be from one of the
following:

0 = Idle
1 = Command In Progress

3.1 Driver Related Commands
The Commands in this section are used to open and close the driver and get driver related information.
At the application level you must Open the Driver (allowing access to the top level of the driver) and
then Open the Device (selecting the hardware interface) in order to communicate with the camera.

3.1.1 Open Driver
The Open Driver command is used to initialize the driver and should be your first call to the driver. It
takes no Parameters and returns no Results. Just pass NULL pointers to the Parameters and Results
arguments of the SBIGUDrvCommand function when you call it.

3.1.2 Close Driver
The Close Driver command is used to close the driver and should be your last call to the driver. There
must be one call to Close Driver for each call to Open Driver. This command takes no Parameters and
returns no Results. Just pass NULL pointers to the Parameters and Results arguments of the
SBIGUDrvCommand function when you call it.

3.1.3 Open Device
The Open Device command is used to load and initialize the low-level driver. You will typically call
this second (after Open Driver).

Parameters Struct:
struct OpenDeviceParams {

enum deviceType
0 = unused
1,2,3 – LPT 1,2,3
0x7F00 – USB
0x7F01 – Ethernet
0x7F02 – USB1
0x7F03 – USB2
0x7F04 – USB3
0x7F05 – USB4

ushort lptBaseAddress – for LPT1,2,3 base port address of the LPT port
ulong ipAddress - for Ethernet the IP address of the camera/accessory

}

This command returns no Results. Just pass a NULL pointer to the Results argument of the
SBIGUDrvCommand function when you call it.

Notes:

• The lptBaseAddress is required for LPT1,2,3 under Windows 95/98/Me. This is typically
0x378 for LPT1 and 0x278 for LPT2 but can vary from machine to machine and can be found
from the Device Manager control panel. Under Windows NT/2000/XP you can leave this set to
0 as the driver gets this information from the OS.

Santa Barbara Instrument Group Universal Driver Application Note

 Page 8

• The ipAddress is required for Ethernet. Use the four bytes of the long with the most significant
byte specifying the first part of the address. For example if the desired IP address is 192.168.0.1
use 0xC0A80001 (0xC0=192, 0xA8 = 168, etc.)

• When using the Open Device command for opening USB devices, specifying USB (DEV_USB
= 0x7F00) opens the next available USB device which may not be what you want in situations
with multiple USB cameras. In these cases use the Query USB command first to see what
model cameras are available then specify USB1, USB2, USB3 or USB4 to open those specific
cameras.

3.1.4 Close Device
The Close Driver command is used to close the low-level driver. You will typically call this second to
last (right before Close Driver). There must be one call for Close Device for every call to Open Device.
 The Close Device command takes no Parameters and returns no Results. Just pass NULL
pointers to the Parameters and Results arguments of the SBIGUDrvCommand function when you call it.

3.1.5 Get Driver Info
The Get Driver Info command is used to determine the version and capabilities of the DLL/Driver. For
future expandability this command allows you to request several types of information. Initially the
standard request and extended requests will be supported but as the driver evolves additional requests
will be added.

Parameters Struct:
struct GetDriverInfoParams {

enum request - type of driver information desired
0 = Standard request
1 = Extended request
2 = USB loader request
3, etc. - reserved for future expansion

}

Standard, Extended and USB Loader Results Struct:
struct GetDriverInfoResults0 {

ushort version - driver version in BCD with the format XX.XX
char name[64] - driver name, null terminated string
ushort maxRequest - maximum request response available from this driver

}

The Standard request returns the version and name information for the high level SBIG Universal Driver
Library. The Extended request returns the version and name information for the low level LPT or USB
driver. With linked USB cameras the USB Loader request returns the version and name information for
the USB Loader driver.

3.1.6 Get/Set Driver Handle
The Get/Set Driver Handle commands are for use by applications that wish to talk to multiple cameras
on various ports at the same time. If your software only wants to talk to one camera at a time you can
ignore these commands.

The Get Driver Handle command takes a NULL Parameters pointer and a pointer to a
GetDriverHandleResults struct for Results. The Set Driver Handle command takes a pointer to a
SetDriverHandleParams struct for Parameters and a NULL pointer for Results. To establish links to
multiple cameras do the following sequence:

Santa Barbara Instrument Group Universal Driver Application Note

 Page 9

• Call Open Driver for Camera 1
• Call Open Device for Camera 1
• Call Establish Link for Camera 1
• Call Get Driver Handle and save the result as Handle1
• Call Set Driver Handle with INVALID_HANDLE_VALUE in the handle parameter
• Call Open Driver for Camera 2
• Call Open Device for Camera 2
• Call Establish Link for Camera 2
• Call Get Driver Handle and save the result as Handle2

Then, when you want to talk to Camera 1, call Set Driver Handle with Handle1 and when you want to
talk to Camera 2, call Set Driver Handle with Handle2. To shut down you must call Set Driver Handle,
Close Device and Close Driver in that sequence for each camera.
 Each time you call Set Driver Handle with INVALID_HANDLE_VALUE you are allowing
access to an additional camera up to a maximum of four cameras. These cameras can be on different
LPT ports, multiple USB3 cameras or at different Ethernet addresses. There is a restriction though due
to memory considerations. You can only have a single readout in process at a time for all cameras and
CCDs within a camera. Readout begins with the Start Readout or Readout Line commands and ends
with the End Readout command. If you try to do multiple interleaved readouts the data from the
multiple cameras will be commingled. To avoid this, simply readout one camera/CCD at a time in an
atomic process.

3.2 Exposure Related Commands
The commands in the section are used to initiate, complete or cancel an exposure in the camera. For
each exposure the camera needs to be instructed to start the exposure, stop the exposure, and readout the
image on a row-by-row basis.

3.2.1 Start Exposure
The Start Exposure command is used to initiate an exposure. The application specifies the exposure
time, etc. and then monitors the exposure's progress with the Query Command Status command
discussed below.

Parameters Struct:
struct StartExposureParams {

enum ccd - the CCD to use in the exposure
0 = Imaging CCD
1 = Tracking CCD
2 = External Tracking CCD in ST-L

ulong exposureTime - integration time in hundredths of a second in the least significant 24 bits.
The most significant 8 bits are bit-flags that modify the exposure as described below.

enum abgState - antiblooming gate state during integration
0 = Low during integration (ABG shut off)
1 = Clocked at low rate, 2 = Clocked at medium rate,3 = Clocked at high rate

enum openShutter - 0=Leave Shutter alone, 1=Open Shutter for Exposure and Close for
Readout, 2=Close Shutter for Exposure and Readout

}

3 At this time supporting multiple USB cameras simultaneously is possible but not very convenient for the user. The first time

you open a USB device you will get the first camera connected to the computer, etc. At some point you would like to be
able to enumerate the USB cameras. Use the Query USB Command to do that.

Santa Barbara Instrument Group Universal Driver Application Note

 Page 10

The status for this command (from the Query Command Status Command) consists of the following two
2-bit fields:

b1b0 = Imaging CCD Status, 00 - CCD Idle, 10=In Progress, 11=Complete
b3b2 = Internal and External Tracking CCD Status, 00 - CCD Idle, 10=In Progress,

11=Complete
b15 = Trigger In Status, 1=Waiting for Trigger In, 0=Not waiting

Notes:
• For the ST-7/ST-8/ST-9/ST-10/ST-1K/ST-402 add START_SKIP_VDD to the ccd parameter to

increase the image rep rate. This bypasses the time consuming reduction of the CCD’s Vdd
which is normally used to reduce the readout amplifier glow for the imaging CCD. You’ll get a
glow in the upper-left corner of the Imaging CCD but the readout rep rate will be higher. SBIG
uses this in the Turbo focus mode.

• For the ST-7/ST-8/ST-9/ST-10/ST-1K the minimum allowable exposure is
MIN_ST7_EXPOSURE (.12 seconds) when the openShutter item is 1. If you ask the driver to
make a shorter exposure it will take a .12 second exposure.

• For the ST-402 the minimum allowable exposure is MIN_402_EXPOSURE (40 milliseconds)
when the openShutter item is 1. If you ask the driver to make a shorter exposure it will take a
40 millisecond second exposure.

• With Interline CCD cameras like the ST-2K, STL-11K with their electronic shutter the minimum
allowable exposure is 0.01 seconds with Version 4.24 of the library and 0.001 seconds with
version 4.27 and later.

• To see if a particular camera supports millisecond resolution exposures use the GetCCDInfo
command Request 4 and check for and Electronic shutter.

• To get millisecond resolution exposures add EXP_MS_EXPOSURE to the exposureTime item
and set the rest of the item to the exposure time in milliseconds. Millisecond exposures from 1
to 255 are possible. Millisecond exposures longer that 255 are rounded up to the nearest 100th of
a second and programmed as a standard non-millisecond exposure.

• The maximum exposure is 655.35 seconds for Tracking CCD and 167,777.16 seconds for
Imaging CCD.

• The abgState only affects the TC211 versions of the Tracking CCD on the ST-7/8/etc. and the
Imaging CCD of the PixCel255.

• For the PixCel255, PixCel237, ST-1K and ST-402 you need to specify the Imaging CCD since
the camera is not a dual CCD design.

• For the PixCel255 and PixCel237 the openShutter parameter is ignored and should be set to 0.
Use the Pulse Out command to position the Vane/Filter Wheel.

• Bits b2/b3 of the status indicate the Tracking CCD status. With the ST-L and its two tracking
CCDs (internal and external) only one set of status is maintained for ease of backwards
compatibility. The moral of the story is always issue Start/Stop exposures in pairs for the
Tracking CCDs or else these status bits can get confused.

• The ST-L’s external shutter in the Remote Tracking Head mimics the internal shutter. When the
internal shutter is opened the external shutter is opened vice versa.

• Adding EXP_SEND_TRIGGER_OUT to the exposureTime item causes the Universal Driver to
wait for a Trigger Input signal from the camera before starting the Exposure. This status of the
Trigger In signal is indicated by bit b15 of the command status.

3.2.2 End Exposure
The End Exposure command is used after the integration is complete to prepare the CCD for readout or
to terminate an exposure prematurely.

Santa Barbara Instrument Group Universal Driver Application Note

 Page 11

Parameters Struct:
struct EndExposureParams {

enum ccd - the CCD to end the exposure
0 = Imaging CCD
1 = Tracking CCD
2 = External Tracking CCD in ST-L

}
Notes:

• The End Exposure command must be called at least once for each Start Exposure command
issued. Several End Exposure commands can be issued without generating an error.

• For the ST-7/8/etc. the End Exposure command prepares the CCD for readout. This normally
involves delaying a period of time waiting for the shutter motor to turn off. You can tell the
driver to skip this delay by adding END_SKIP_DELAY to the ccd enum item in order to
increase the image rep rate, but you should do this only when the shutter didn't move for both the
light and dark images. This means you issued the Start Exposure command with the
openShutter item set to 0 (leave shutter alone) for the light image and with the openShutter
item set to 2 (shutter closed for integration and readout) for the dark frame. This scenario only
occurs when you are using the Tracking CCD while the Imaging CCD is integrating.

• With the PixCel255, PixCel237, ST-1K and ST-402 the ccd parameter should be set to 0 for the
Imaging CCD.

3.2.3 Start Readout
The Start Readout command is used to inform the driver about the area you intend to readout in
subsequent calls to the Readout Line or Read Subtract Line commands. Calling this command is
optional (but suggested) and optimizes the readout throughput for small areas on USB and Ethernet
based cameras.

Parameters Struct:
struct StartReadoutParams {

enum ccd - the CCD that will be read out
0 = Imaging CCD
1 = Tracking CCD
2 = External Tracking CCD in ST-L

enum readoutMode - binning mode utilized during readout
0 = No binning, high resolution
1 = 2x2 on-chip binning, medium resolution
2 = 3x3 on-chip binning, low resolution (ST-7/8/etc/237 only)
0xNN03 = Nx1 on-chip binning (ST-7/8/etc only)
0xNN04 = Nx2 on-chip binning (ST-7/8/etc only)
0xNN05 = Nx3 on-chip binning (ST-7/8/etc only)
6 = No binning, high resolution (ST-7/8/etc only)
7 = 2x2 binning with vertical binning off-chip (ST-7/8/etc only)
8 = 3x3 binning with vertical binning off-chip (ST-7/8/etc only)
9 = 9x9 binning (ST-7/8/etc only)

 ushort top – topmost row to readout (0 based)
 ushort left – left most pixel to readout (0 based)
 ushort height – image height
 ushort width – image width
}

Santa Barbara Instrument Group Universal Driver Application Note

 Page 12

Notes:

• See the notes for the Readout Line command.
• The Start Readout command does not actually readout any pixels. It just tells the driver which

pixels you will readout using the Readout Line command.
• The Start Readout command does discard top lines from the CCD. You do not need to call

Dump Lines prior to calls to Readout Line after using the Start Readout Command.
• Even though you specify left and width parameters with this command you must pass the same

values in the pixelStart and pixelLength parameters in subsequent calls to the Readout Line
command.

• With the PixCel255, PixCel237, ST-1K and ST-402 the ccd parameter should be set to 0 for the
Imaging CCD.

3.2.4 Readout Line
The Readout Line command is used to digitize some or all of the active pixels in a row.

Parameters Struct:
struct ReadoutLineParams {

enum ccd - the CCD to readout
0 = Imaging CCD
1 = Tracking CCD
2 = External Tracking CCD in ST-L

enum readoutMode - binning mode utilized during readout
see Start Readout command above

ushort pixelStart - left most pixel to readout
ushort pixelLength - number of pixels to digitize

}

Results Struct:
Rather than passing a pointer to a Results struct, pass a pointer to the destination array of unsigned short
integers where the Readout Line command should place the digitized pixel data.

Notes:

• Any arbitrary region can be readout using the Dump Lines and Readout Line commands by
varying the pixelStart and pixelLength parameters.

• On Windows 95/98/Me interrupts are disabled for the duration of the line readout. You may
want to use the Update Clock command to resynchronize the system clock after reading out an
image.

• The PixCel255 and the TC-211 based Tracking CCDs only support the 1x1 and 2x2 binning
modes. The 3x3 binning mode is supported by the Imaging CCD, the TC-237 based Tracking
CCD and by the PixCel237 only.

• With the PixCel255, PixCel237, ST-1K and ST-402 the ccd parameter needs to be set to 0 for
the Imaging CCD.

• When binning modes are used, the pixelStart and pixelLength parameters are in terms of binned
pixels.

• You can get the dimensions of the camera's CCD(s) using the Get CCD Info command.
• The Nx1, Nx2 and Nx3 binning modes of the ST-7/8/etc support variable binning (N=1 thru 255)

in the vertical direction. You specify the amount of vertical binning in the most significant byte
of the readout mode.

• The 1x1, 2x2 and 3x3 off-chip binning modes offer non-streaked horizontal readout for non-

Santa Barbara Instrument Group Universal Driver Application Note

 Page 13

Antiblooming versions of the ST-7/8/etc. These detectors bloom both horizontally and vertically
under saturating conditions and these readout modes remove the horizontal blooming. They are
not necessary with the antiblooming versions of these cameras and the standard on-chip readout
modes can be used.

• Readout mode 9 with 9x9 binning is roughly 3 times faster than 3x3 mode and is intended for a
fast Focus/Center mode.

• You can only have a single readout in process at a time for all cameras and CCDs in a camera.
Readout begins with the Start Readout or Readout Line commands and ends with the End
Readout command. If you try to do multiple interleaved readouts the data from the multiple
cameras will be commingled. To avoid this, simply readout one camera/CCD at a time in an
atomic process.

3.2.5 Read Subtract Line
The Read Subtract Line command is identical to the Readout Line command except that it subtracts the
data that is stored in memory prior to the readout from the readout data. The Data stored in the array is:

Data[n] = CCD[n] - Data[n] + 100

The subtraction adds a bias of 100 to prevent the data from clipping and makes sure the data doesn't
overflow or underflow.

Parameters Struct:
struct ReadoutLineParams {

enum ccd - the CCD to readout
0 = Imaging CCD
1 = Tracking CCD
2 = External Tracking CCD in ST-L

enum readoutMode - binning mode utilized during readout
see Start Readout command above

ushort pixelStart - left most pixel to readout
ushort pixelLength - number of pixels to digitize

}

Results Struct:
Rather than passing a pointer to a Results struct, pass a pointer to the destination array of unsigned short
integers where the Read Subtract Line command should place the digitized pixel data.

Notes:

• See the notes for the Readout Line command.
• The data is subtracted in place. The Read Subtract command digitizes a pixel, subtracts the value

in the destination array, adds 100 counts to avoid clipping at 0 and then stores that result in the
destination array.

• With the PixCel255, PixCel237, ST-1K and ST-402 the ccd parameter should be set to 0 for the
Imaging CCD.

3.2.6 Dump Lines
The Dump Lines command is used to discard all of the active pixels in a row on the CCD. You would
use this for example when partial frame readout is desired to discard lines above a desired region.

Parameters Struct:
struct DumpLinesParams {

Santa Barbara Instrument Group Universal Driver Application Note

 Page 14

enum ccd - the CCD to dump lines
0 = Imaging CCD
1 = Tracking CCD
2 = External Tracking CCD in ST-L

enum readoutMode - binning mode utilized during readout
see Start Readout command above

ushort lineLength - number of lines to dump
}

Notes:
• See the notes for the Readout Line command.
• Unused rows of pixels can be dumped faster than they can be read out. Using the Dump Lines

command for sub-array readout can speed up image throughput.
• With the PixCel255, PixCel237, ST-1K and ST-402 the ccd parameter should be set to 0 for the

Imaging CCD.

3.2.7 End Readout
The End Readout command is used after readout of the CCD is complete to prepare the CCD for the idle
state.

Parameters Struct:
struct EndReadoutParams {

enum ccd - the CCD to end the exposure
0 = Imaging CCD
1 = Tracking CCD
2 = External Tracking CCD in ST-L

}
Notes:

• The End Readout command should be called at least once per readout after calls to the Readout
Line, Read Subtract Line or Dump Lines command are complete. Several End Readout
commands can be issued without generating an error.

• For the ST-7/8/etc the End Readout command prepares the CCD for the idle state. This normally
involves turning off the CCD preamp and unfreezing the TE cooler if Auto TE Freeze mode has
been enabled (see the Set Temperature Regulation command).

• For the other cameras (PixCel255, PixCel237) the End Readout Command does nothing at the
current time. For future compatibility you should call this command at the end of the readout
phase.

• With the PixCel255, PixCel237, ST-1K and ST-402 the ccd parameter should be set to 0 for the
Imaging CCD.

3.2.8 Get Line
The current driver does not use this command. It was added in a previous version and never removed. It
could be reassigned in the future.

3.3 Temperature Related Commands
The commands in this section are used to program or monitor the CCD's temperature regulation. Note
that parallel port based cameras contain two temperature-sensing thermistors, one in the housing
measuring the ambient temperature and on one on the CCD. USB based cameras only have a single
thermistor mounted on the CCD. Reading the ambient thermistor on those cameras will return a fixed
25°C

Santa Barbara Instrument Group Universal Driver Application Note

 Page 15

3.3.1 Set Temperature Regulation
The Set Temperature Regulation command is used to enable or disable the CCD's temperature
regulation.

Parameters Struct:
struct SetTemperatureRegulationParams {

enum regulation - 0=regulation off, 1=regulation on, 2=regulation override,
 3=freeze TE cooler, 4=unfreeze TE cooler,
 5=enable auto-freeze, 6=disable auto-freeze
ushort ccdSetpoint - CCD temperature setpoint in A/D units if regulation on or TE drive level

(0-255 = 0-100%) if regulation override
}

Notes:
• The setpoint above is in A/D units. To convert from temperature in °C to A/D setpoint units

and to convert the thermistor readings from the Query Temperature Status command to °C
use the following formulas, noting that the CCD thermistor and Ambient thermistor require
different constants:

T0 = 25.0 R0 = 3.0
MAX_AD = 4096
R_RATIOCCD = 2.57 R_RATIOAmbient = 7.791
R_BRIDGECCD = 10.0 R_BRIDGEAmbient = 3.0
DTCCD = 25.0 DTAmbient = 45.0

Calculation of Setpoint from Temperature T in °C

r = R0 × e
ln(R_RATIO)×(T0 −T)

DT




 




 

setpoint =

MAX_ AD
R_ BRIDGE

r
+ 1.0





Calculation of Temperature T in °C from Setpoint

r =
R_ BRIDGE

MAX_ AD
setpoint

− 1.0


 



T = T0 − DT ×
ln

r
R0




 




ln(R_ RATIO)

















• What the heck is the "Freeze" all about? This only pertains to ST-7/8/etc cameras and freezing

the TE cooler means telling the temperature regulation circuitry in the camera to keep the TE
cooler power at the same level it's currently at until we come back later and unfreeze it. It's
essentially a way of telling the camera to be very "quiet" for a period of time. What you do with
the freeze commands is use them to freeze the TE cooler for readout and unfreeze it when you're
done with the readout. This insures the absolute lowest noise readout possible. One thing you
don't want to do is keep the TE frozen for a long period of time if you're not reading out the CCD

Santa Barbara Instrument Group Universal Driver Application Note

 Page 16

because then you'll degrade the performance of the temperature regulation circuitry.
 To take advantage of the freeze feature you first tell the camera to enable temperature
regulation with the regulation item set to 1 and the setpoint item set to the desired setpoint
temperature, just like you normally would. This allows the camera to achieve regulation at the
setpoint temperature. Then, just before you start the readout you call this command with the
regulation item set to 3 (the setpoint does not matter). After readout call this command with the
regulation item set to 4 (again, setpoint doesn't matter). Don't forget to unfreeze the TE or you'll
get poor temperature regulation.
 You can also get the camera to automatically freeze and unfreeze the TE cooler for you
by calling this command with the regulation item set to 5. After doing this the driver will freeze
the TE at the first sign of readout and unfreeze it when you call the End Readout command. If
you use the auto-freeze feature don't forget that call to End Readout. Finally to disable the auto-
freeze function call this command with the regulation item set to 6.
 Finally, you can query whether the TE is frozen by logically anding the enabled item of
Query Temperature Status command results with the REGULATION_FROZEN_MASK from
the SBIGUDRV.H header. If it's set the TE is currently frozen (either manually or by the auto-
freeze feature).

• The cooling in the ST-L’s Remote Guiding Head mimics the internal cooling. While the Remote
Guiding Head has unregulated cooling the cooling is enable whenever internal TE power is
above 0%.

3.3.2 Query Temperature Status
The Query Temperature Status command is used to monitor the CCD's temperature regulation.

Results Struct:
struct QueryTemperatureStatusResults {

LOGICAL enabled - temperature regulation is enabled when this is TRUE
ushort ccdSetpoint - CCD temperature or thermistor setpoint in A/D units
ushort power - this is the power being applied to the TE cooler to maintain temperature

regulation and is in the range 0 thru 255
ushort ccdThermistor - this is the CCD thermistor reading in A/D units
ushort ambientThermistor - this is the ambient thermistor reading in A/D units

}

Notes:
• Refer to the Set Temperature Regulation command for the formula to convert between A/D units

and degrees C for the thermistor readings.
• You can query whether the TE is frozen (see the Set Temperature Regulation command) by

logically anding the enabled item of the results with the REGULATION_FROZEN_MASK from
the SBIGUDRV.H header. If it's set the TE is frozen.

3.4 External Control Commands
The commands in this section are used to control the telescope position through the telescope interface
or to position the CFW-6A motorized color filter wheel.

3.4.1 Activate Relay
The Activate Relay command is used to activate one or more of the telescope control outputs or to
cancel an activation in progress.

Parameters Struct:
struct ActivateRelayParams {

Santa Barbara Instrument Group Universal Driver Application Note

 Page 17

ushort tXPlus - x plus activation duration in hundredths of a second
ushort tXMinus - x minus activation duration in hundredths of a second
ushort tYPlus - y plus activation duration in hundredths of a second
ushort tYMinus - y minus activation duration in hundredths of a second

}

The status for this command (from the Query Command Status Command) consists of the following four
bit field:

b3 = +X Relay, 0=Off, 1= Active
b2 = -X Relay, 0=Off, 1= Active
b1 = +Y Relay, 0=Off, 1= Active
b0 = -Y Relay, 0=Off, 1= Active

Notes:
• This command can be used to cancel relay activations by setting the appropriate parameters to 0.

3.4.2 Pulse Out
The Pulse Out command is used with the ST-7/8/etc to position the CFW-6A/CFW-8 and with the
PixCel255 and PixCel237 to position the internal vane/filter wheel.

Parameters Struct:
struct PulseOutParams {

ushort numberPulses - number of pulses to generate (0 thru 255)
ushort pulseWidth - width of pulses in units of microseconds with a minimum of 9

microseconds
ushort pulsePeriod - period of pulses in units of microseconds with a minimum of 29 plus the

pulseWidth microseconds
}

The status for this command (from the Query Command Status command) consists of the following bit
fields:

b0 - Normal status, 0 = inactive, 1 = pulse out in progress
b1-b3 - PixCel255/237 Filter state, 0=moving, 1-5=at position 1-5, 6=unknown

Notes:

• The camera will cease communications while the Pulse Out command is in progress to maintain
the best pulse width accuracy. After sending the ACK response the camera will generate the
pulses and only when it has finished generating the pulses will it respond to further
communications from the PC.

• With the PixCel255/237 for positioning the internal vane/filter wheel you set the numberPulses
parameter to a non-zero value (typically 1), the pulseWidth to zero and the pulsePeriod to one of
the following values: 0=Leave vane/filter alone, 1-5=Position vane/filter wheel at position 1 thru
5, 6=Stop motor, abort any move in progress, 7=initialize and identify vane/filter wheel.

• On the PixCel255/237 the following filter positions are defined: Position 1 = Clear/Open,
Position 2 = Opaque, Position 3 = Red, Position 4 = Green and Position 5 = Blue. Positions 1
and 2 are supported by the vane and positions 1 thru 5 are supported by the filter wheel.

• You find out what type of filter wheel is installed in the PixCel255/237 using the Get CCD Info
command with request number 3.

Santa Barbara Instrument Group Universal Driver Application Note

 Page 18

• See the CFW command below for a high level API for programming the SBIG color filter
wheels.

• The Pulse Out command directed to an ST-L will cause the ST-L’s CFW-L to emulate a CFW-8.
This makes old software for the CFW-8 work on the CFW-L but new code should use the CFW
command to support the CFW-L.

3.4.4 TX Serial Bytes
The TX Serial Bytes command is for internal use by SBIG. It’s a very low level version of commands
like AO Tip Tilt that are used to send data out the ST-7/8/etc’s telescope port to accessories like the
AO-7. There’s no reason why you should need to use this command. Just use the dedicated commands
like AO Tip Tilt.

3.4.5 Get Serial Status
The Get Serial Status command is for internal use by SBIG. It’s a very low level version of commands
like AO Tip Tilt that are used to send data out the ST-7/8/etc’s telescope port to accessories like the
AO-7. There’s no reason why you should need to use this command. Just use the dedicated commands
like AO Tip Tilt.

3.4.6 AO Tip Tilt
The AO Tip Tilt Command is used to position an AO-7 attached to the telescope port of an ST-7/8/etc.

Parameters Struct:
struct AOTipTiltParams {

ushort xDeflection - this is the desired position of the mirror in the X axis
ushort yDeflection - this is the desired position of the mirror in the Y axis

}

Notes:

• The range for the X and Y deflection parameters are 0 through 4095. The mirror is centered at
2048, fully to one side at 0 and fully at the other side with 4095.

3.4.7 AO Set Focus
This command is reserved for future use with motorized focus units. Prototypes of the AO-7 had
motorized focus but the feature was removed in the production units. This command is a holdover from
that.

3.4.8 AO Delay
The AO Delay Command is used to generate millisecond type delays for exposing the Tracking CCD.

Parameters Struct:
struct AODelayParams {

ulong delay - this is the desired delay in microseconds
}

Notes:

• The computer essentially hangs while waiting for this delay to expire so be careful how you use
this command.

3.4.9 CFW
The CFW Command is a high-level API for controlling the SBIG color filter wheels. It supports the
CFW-2 (two position shutter wheel in the ST-5C/237), the CFW-5 (internal color filter wheel for the

Santa Barbara Instrument Group Universal Driver Application Note

 Page 19

ST-5C/237), the CFW-8, the internal filter wheel (CFW-L) in the ST-L Large Format Camera, the
internal filter wheel (CFW-402) in the ST-402 camera, the old 6-position CFW-6A and the new
10-position CFW-10 in both I2C and RS-232 interface modes.

Parameters Struct:
struct CFWParams {

enum cfwModel – (see the CFW_MODEL_SELECT enum) 0=Unknown, 1=CFW-2, 2=CFW-5,
 3=CFW-8, 4=CFW-L, 5=CFW-402,
 6=Auto detect, 7=CFW-6A, 8=CFW-10
 enum cfwCommand – (see the CFW_COMMAND enum) 0=Query, 1=Goto, 2=Init, 3=Get Info,

 4=Get
 ulong cwfParam1 – command specific
 ulong cfwParam2 – “ “
 ushort outLength – “ “
 uchar *outPtr – “ “
 ushort inLength – “ “
 uchar *inPtr – “ “
}

Results Struct:
typedef struct CFWResults {
 ushort cfwModel – See cfwModel above
 ushort cfwPosition – (see the CFW_POSITION enum) 0=Unknown, 1 thru 1 = Position 1 thru 6
 ushort cfwStatus – (see the CFW_STATUS enum) 0=Unknown, 1=Idle, 2= Busy
 ushort cfwError – (see the CFW_ERROR enum) 0=No Error, 1=CFW Busy, 2=Bad Command,
 3=Calibration Error, 4 = Motor Timeout, 5=Bad Model
 ulong cfwResult1 – command specific
 ulong cfwResult2 – “ “
}

CFW Command CFWC_QUERY

• Use this command to monitor the progress of the Goto sub-command. This command takes no
additional parameters in the CFParams. You would typically do this several times a second after
the issuing the Goto command until it reports CFWS_IDLE in the cfwStatus entry of the
CFWResults. Additionally filter wheels that can report their current position (all filter wheels
except the CFW-6A or CFW-8) have that position reported in cfwPosition entry of the
CFWResults.

CFW Command CFWC_GOTO

• Use this command to start moving the color filter wheel towards a given position. Set the desired
position in the cfwParam1 entry with entries defined by the CFW_POSITION enum.

CFW Command CFWC_INIT

• Use this command to initialize/self-calibrate the color filter wheel. All SBIG color filter wheels
self calibrate on power-up and should not require further initialization. We offer this option for
users that experience difficulties with their color filter wheels or when changing between the
CFW-2 and CFW-5 in the ST-5C/237. This command takes no additional parameters in the
CFWParams struct.

Santa Barbara Instrument Group Universal Driver Application Note

 Page 20

CFW Command CFW_GET_INFO
• This command supports several sub-commands as determined by the cfwParam1 entry (see the

CFW_GETINFO_SELECT enum). Command 0 returns the version of the CFW firmware in the
cfwResults1 entry of the CFWResults, commands 1 and 2 are for internal SBIG use only and all
other commands are undefined.

CFW Commands CFWC_OPEN_DEVICE and CFWC_CLOSE_DEVICE

• These commands are used to Open and Close any OS based communications port associated
with the CFW and should proceed the first command sent and follow the last command sent to
the CFW. While strictly only required for the RS-232 version of the CFW-10 calling these
commands is a good idea for future compatibility.
 For the RS-232 based CFW-10 set the cfwParam1 entry to one of the settings from the
CFW_COM_PORT enum to indicate which PC COM port is used to control the CFW-10.
Again, only the RS232 controlled CFW-10 requires these calls.

Notes:

• The CFW Command takes pointers to CFWParams as parameters and CFWResults as results.
• Set the cfwModel entry in the CFWParams to the type of filter wheel you want to control. The

same value is returned in the cfwModel entry of the CFWResults. If you select the
CFWSEL_AUTO option the driver will use the most appropriate model.

• The CFW Command is a single API call that supports multiple sub-commands through the
cfwCommand entry in the CFWParams. Each of the sub-commands requires certain settings of
the CFWParams entries and returns varying results in the CFWResults. Each of these
sub-commands is discussed in detail below.

• As with all API calls the CFW Command returns an error code. If the error code is
CE_CFW_ERROR. In addition the cfwError entry in the CFWResults further enumerates the
error.

• With the CFW-6A model color filter wheel set the cfwParam1 item to the desired calibrated
pulse width in microseconds for the Goto and Init sub-commands.

3.5 General Purpose Commands
The commands discussed in this section are general-purpose commands that do not fall into one of the
groups discussed above. They are used by the application to interrogate the driver and camera.

3.5.1 Establish Link
The Establish Link command is used by the application to establish a communications link with the
camera. It should be used before any other commands are issued to the camera (excluding the Get
Driver Info command).

Parameters Struct:
struct EstablishLinkParams {

ushort sbigUseOnly – leave set to 0, maintained for historical purposes only
}

Results Struct:
struct EstablishLinkResults {

enum cameraType - constant specifying the type of camera as specified by the
CAMERA_TYPE enum

}
Notes:

Santa Barbara Instrument Group Universal Driver Application Note

 Page 21

• The EstablishLinkParams struct was modified in version 4 of the driver and no longer specifies
the LPT base address. This data is now supplied to the driver through the Open Device
command.

• When establishing a link to an ST-237A the cameraType is reported as an original
ST237_CAMERA. This was done for maximum compatibility with existing 3rd party software
packages. The way you distinguish an ST-237A (16 bit A/D) from the ST-237 (12 bit A/D) is by
checking the gain item from the Get CCD Info command response. If the gain is less than 1.0
(0x100) you are talking to an ST-237A.

3.5.2 Get CCD Info
The Get CCD Info command is used by the application to determine the model of camera being
controlled and its capabilities. For future expandability this command allows you to request several
types of information. Currently 6 standard requests are supported but as the driver evolves additional
requests will be added.

Parameters Struct:
struct GetCCDInfoParams {

enum request - type of CCD information desired
0 = standard request for Imaging CCD

 1 = standard request for Tracking CCD
2 = extended request for Camera Info
3 = extended request for PixCel255/237 Camera Info
4 = secondary extended request for Imaging CCD
5 = secondary extended request for Tracking CCD
6,7, etc. - reserved for future expansion

}

Standard Results Struct :
requests 0 and 1 -
struct GetCCDInfoResults0 {

ushort firmwareVersion - version of the firmware in the resident microcontroller in BCD format
(XX.XX, 0x1234 = 12.34)

enum cameraType - constant specifying the type of camera, (see CAMERA_TYPE enum in
SBIGUDRV.H)

char name[64] - null terminated string containing the name of the camera
ushort readoutModes - number of readout modes supported
struct readoutInfo[20] {

ushort mode - readout mode to pass to the Readout Line command
ushort width - width of image in pixels
ushort height - height of image in pixels
ushort gain - a four digit BCD number specifying the amplifier gain in e-/ADU in the

XX.XX format.
ulong pixelWidth - an eight digit BCD number specifying the pixel width in microns in

the XXXXXX.XX format.
ulong pixelHeight - an eight digit BCD number specifying the pixel height in microns in

the XXXXXX.XX format.
}

}

request 2 -

Santa Barbara Instrument Group Universal Driver Application Note

 Page 22

struct GetCCDInfoResults2 {
 ushort badColumns - number of bad columns in imaging CCD
 ushort columns[4] - bad columns
 enum imagingABG - type of Imaging CCD, 0= No ABG Protection, 1 = ABG Present
 char serialNumber[10] - null terminated serial number string
}

request 3 - For the PixCel255/237
struct GetCCDInfoResults3 {
 enum adSize - 0 = Unknown, 1 = 12 bits, 2 = 16 bits
 enum FilterType - 0 = Unknown, 1 = External, 2 = 2 Position, 3 = 5 Position
}

requests 4 and 5 - For all cameras
struct GetCCDInfoResults4 {

ushort capabilitiesBits – Set of bits for additional capabilities:
b0: 0 = CCD is Full Frame Device, 1 = CCD is Frame Transfer Device,
b1: 0 = No Electronic Shutter, 1 = Interline Imaging CCD with Electronic Shutter and

millisecond exposure capability
 ushort dumpExtra – Number of unbinned rows to dump to transfer image area to
 storage area
}

Notes:

• The ST-7/8/etc supports types 0, 1, 2, 4 and 5 requests. The PixCel255/237 supports request
types 0, 3, 4 and 5.

• A zero in the height field of the readoutInfo struct signifies the xN mode vertically.
• Mode 9 with 9x9 binning on some sensors (like the ST-1K) will report the maximum pixel

height/width of 99.99 even though the binned pixels are actually larger. If you need the correct
pixel size multiply the pixel size from mode 0 by the binning factor.

• Requests 4 and 5 are for use when you bypass the Start Exposure/End Exposure commands for
reading out the CCD such as when you are doing millisecond type exposures with the Tracking
CCD and an AO-7. Normally the End Exposure command handles transferring the imaging
area and dummy rows of these CCDs to the storage area but when you bypass it you must
provide for that transfer by adding the number specified in the dumpExtra field to the amount of
lines you want to discard with the Dump Lines command. If you don’t supplement the number
of lines to dump you will be digitizing data from the storage area of the CCD and won’t see any
star images at all.

• See the notes for the Establish Link command above.
• There are several sub-models of the ST-L based upon the type of CCD they contain but they all

report the same value in the cameraType field (STL_CAMERA) of request 0. The name field
includes the sub-model.

• Single Shot Color cameras like the ST-2000XCM will have “Color” in the name item. You can
use this to decide whether you want to interpret the color information or not.

3.5.3 Get Turbo Status
The current driver does not use this command. It was added in a previous version and never removed. It
could be reassigned in the future.

Santa Barbara Instrument Group Universal Driver Application Note

 Page 23

3.5.4 Query Command Status
The Query Command Status command is used to monitor the progress of a previously requested
command. Typically this will be used to monitor the progress of an exposure, relay closure or CFW-6A
move command.

Parameters Struct:
struct QueryCommandStatusParams {

ushort command - command of which the status is desired
}

Results Struct:
struct QueryCommandStatusResults {

ushort status - command status
}

3.5.5 Miscellaneous Control
The Miscellaneous Control command is used to control the Fan, LED, and shutter. The camera powers
up with the Fan on, the LED on solid, and the shutter closed. The driver flashes the LED at the low rate
while the Imaging CCD is integrating, flashes the LED at the high rate while the Tracking CCD is
integrating and sets it on solid during the readout.

Parameters Struct:
struct MiscellaneousControlParams {

LOGICAL fanEnable - set TRUE to turn on the Fan
enum shutterCommand - 0=leave shutter alone, 1=open shutter, 2=close shutter, 3=reinitialize

shutter, 4=open ST-L external shutter, 5=close ST-L external shutter
enum ledState - 0=LED off, 1=LED on, 2=LED blink at low rate, 3=LED blink at high rate

}

The status for this command (from the Query Command Status Command) consists of the following bit
fields:

b7-b0 - Shutter edge - This is the position the edge of the shutter was detected at for the

last shutter move. Normal values are 7 thru 9. Any other value including 255
indicates a shutter failure and the shutter should be reinitialized.

b8 - the Fan is enabled when this bit is 1
b10b9 - Shutter state, 0=open, 1=closed, 2=opening, 3=closing
b12b11 - LED state, 0=off, 1=on, 2=blink low, 3=blink high

Notes:

• The ST-7/8/etc have a shutter, LED and fan but no filter wheel. To position the CFW-6/8
attached to these cameras use the Pulse Out command.

• The PixCel255 has no shutter, fan control or LED but does have a vane/filter wheel. The settings
of the fanEnabled, shutterCommand and ledState parameters are ignored and should be set to 0.

• The PixCel237 has no shutter or LED but does have a fan that can be controlled (turned on and
off) and vane/filter wheel. The settings of the shutterCommand and ledState parameters are
ignored and should be set to 0. The fanEnable is used to control the fan.

• The ST-7/8/etc will cease communications with the PC while the reinitialize shutter command is
in progress. After the driver tells the camera to reinitialize the shutter the driver delays 3 seconds
for the process to complete.

Santa Barbara Instrument Group Universal Driver Application Note

 Page 24

• For this command the ST-l’s external shutter DOES NOT mimic the internal shutter (like it does
with the Start Exposure command). To control the ST-L’s external shutter in the Remote
Tracking Head pass to shutterCommand the SC_OPEN_EXT_SHUTTER and
SC_CLOSE_EXT_SHUTTER values.

3.5.6 Update Clock
The Update Clock no longer supported and calls to this command will do nothing. On older Windows
95/98/Me based systems run or spawn the SETCLOCK.EXE program to restore the system clock for lost
time during the readout of parallel port based cameras. Other Windows versions or systems using USB
cameras don’t loose time.

3.5.7 Read Offset
The Read Offset command is used to measure the CCD's offset. In the SBIG cameras the offset is
adjusted at the factory and this command is for testing or informational purposes only.

Parameters Struct:
struct ReadOffsetParams {

enum ccd - the CCD to measure offset
0 = Imaging CCD
1 = Tracking CCD
2 = External Tracking CCD in ST-L

}

Results Struct:
struct ReadOffsetResults {

ushort offset - the CCD's offset
}

3.5.8 Get US Timer
This command is of extremely limited (and unknown) use. When you have established a link to a
parallel port based camera under Windows NT/2000/XP this command returns a counter with 1
microsecond resolution. Under all other circumstances the counter is zero.

3.5.9 Set/Get IRQL
This command allows you to control the IRQ priority of the driver under Windows NT/2000/XP. The
default settings should work fine for all users and these commands should not need to be used.

We use three settings in our CCDOPS software: High = 27, Medium = 15, Low = 2. Under fast
machines Low will work fine. On slower machines the mouse may get sluggish unless you select the
Medium or High priority.

3.5.10 Get Link Status
This command returns the status of the communications link established with the camera.

Results Struct:
struct {

LOGICAL linkEstablished – TRUE when a link has been established
ushort baseAddress – base address of the LPT port
ushort cameraType – CAMERA_TYPE enum
ulong comTotal – total number of communications with camera
ulong comFailed – total number of failed communications with camera

}

Santa Barbara Instrument Group Universal Driver Application Note

 Page 25

3.5.11 Get Error String
This command returns a null terminated C string in English (not Unicode) corresponding to the passed
error number. It’s handy for reporting driver level errors to the user.

3.5.12 Set Driver Control
This command is used to modify the behavior of the driver by changing the settings of one of the driver
control parameters. Driver options can be enabled or disabled with this command.

Parameters Struct:
struct SetDriverControlParams {

enum controlParameter - the parameter to modify
(see the DRIVER_CONTROL_PARAM enum)

long controlValue – the value of the control parameter
}

Notes:

• The DCP_USB_FIFO_ENABLE parameter defaults to TRUE and can be set FALSE to disable
the FIFO and associated pipelining in the USB cameras. You would do this for example in
applications using Time Delay Integration (TDI) where you don’t want data in the CCD digitized
until the actual call to ReadoutLine is made.

• The DCP_CALL_JOURNAL_ENABLE parameter defaults to FALSE and can be set to TRUE
to have the driver broadcast Driver API calls. These broadcasts are handy as a debug tool for
monitoring the sequence of API calls made to the driver. The broadcasts can be received and
displayed with the Windows based SBIGUDRVJournalRx.exe application.
 Only use this for testing purposes and do not enabled this feature in your released version of
you application as the journaling mechanism can introduce minor artifacts in the readout.

• The DCP_IVTOH_RATIO parameter sets the number of Vertical Rows that are dumped (fast)
before the Horizontal Register is dumped (not as fast) in the DumpRows command for Parallel
Port based cameras. This is a very specialized parameter and you should think hard about
changing it if you do. The default of 5 for the IHTOV_RATIO has been determined to offer a
good compromise between the time it takes to clear the CCD or Dump Rows and the ability to
effectively clear the CCD after imaging a bright object. Finally should you find it necessary to
change it read the current setting and restore it when you’re done.

• The DCP_USB_FIFO_SIZE parameter sets the size of the FIFO used to receive data from USB
cameras. The default and maximum value of 16384 yields the highest download speeds.
Lowering the value will cause the camera to digitize and download pixels in smaller chunks.
Again this is a specialized parameter that 99.9% of programs out there will have no need for
changing.

• The DCP_USB_PIXEL_DL_ENABLE parameter allows disabling the actual downloading of
pixel data from the camera for testing purposes. This parameter defaults to TRUE.

• The DCP_HIGH_THROUGHPUT parameter allows configuring the driver for the highest
possible imaging throughput at the expense of image noise and or artifacts. This parameter
defaults to FALSE and you should only enable this for short periods of time. You might use this
in Focus mode for example to get higher image throughput but you should never use it when you
are taking keeper images. It does things that avoid timed delays in the camera like leaving the
shutter motor on all the time, not lowering the amplifier bias, etc. At this time this feature is
supported in the driver but not all cameras show a benefit from its use.

• The DCP_VDD_OPTIMIZED parameter defaults to TRUE which lowers the CCD’s Vdd (which
reduces amplifier glow) only for images 3 seconds and longer. This was done to increase the
image throughput for short exposures as raising and lowering Vdd takes 100s of milliseconds.

Santa Barbara Instrument Group Universal Driver Application Note

 Page 26

The lowering and subsequent raising of Vdd delays the image readout slightly which causes short
exposures to have a different bias structure than long exposures. Setting this parameter to
FALSE stops the short exposure optimization from occurring.

• The DCP_AUTO_AD_GAIN parameter defaults to TRUE whereby the driver is responsible for
setting the A/D gain in USB cameras. Setting this to FALSE allows overriding the driver
imposed A/D gains.

Notes:

• As of 9/9/03 there is one set of parameters for the whole DLL vs. one per handle.

3.5.13 Get Driver Control
This command is used to query the setting of one of the driver control parameters.

Parameters Struct:
struct GetDriverControlParams {

enum controlParameter - the parameter to modify
(see the DRIVER_CONTROL_PARAM enum)

}

Results Struct:
struct GetDriverControlResults {

long controlValue – the value of the control parameter
}

Notes:

• See the Set Driver Control command above.

3.5.14 USB AD Control
This command is used to modify the USB cameras A/D gain and offset registers.

Parameters Struct:
struct USBADControlParams {

enum command – Imaging or Tracking CCD Gain or Offset
(see the USB_AD_CONTROL_COMMAND enum)

short data – command specific
}

Notes:

• This command is intended for OEM use only. The typical application does not need to use this
command as the USB cameras initialize the A/D to factory set defaults when the camera powers
up.

• For the USB_AD_IMAGING_GAIN and AD_USB_TRACKING_GAIN commands the allowed
setting for the data parameter is 0 through 63. The actual Gain of the A/D (in Volts/Volt) ranges
from 1.0 to 6.0 and is determined by the following formula:

 Gain = 6.0 / (1.0 + 5.0 * ((63 – data) / 63)

Note that the default A/D Gain set by the camera at power up is 1.2 for the Imaging CCD and 2.0
for the Tracking CCD. Furthermore, the gain item reported by the Get CCD Info command will

Santa Barbara Instrument Group Universal Driver Application Note

 Page 27

always report the default factory-set gain and will not change based upon changes made to the
A/D gain by this command.

• For the USB_AD_IMAGING_OFFSET and USB_AD_TRACKING_OFFSET commands the
allowed setting for the data parameter is –255 through 255. Positive offsets increase the video
black level in ADUs. The cameras are programmed at the factory to typically have a 900 to 1000
ADU black level offset.

3.5.15 Query USB
This command is used to query the USB bus and detect up to four cameras. This allows the user to have
multiple USB cameras and for the programmer to connect with specific cameras. This command takes
no parameters and returns data for up to four cameras.

Results Struct:
typedef struct {
 unsigned short camerasFound – total number of cameras found, 0 through 4
 struct QUERY_USB_INFO usbInfo[4] – data for up to 4 cameras

 MY_LOGICAL cameraFound – TRUE if camera found
 enum CAMERA_TYPE cameraType – type of camera found
 char name[64] – name of camera (like from GetCCDInfo command)
 char serialNumber[10] – camera’s serial number (like from GetCCDInfo command)

} QueryUSBResults;

Notes:

• To Establish a link to a specific camera specify DEV_USB1, DEV_USB2, DEV_USB3 or
DEV_USB4 in the device field of the Open Device command. DEV_USB1 corresponds to the
camera described in usbInfo[0], DEV_USB2 corresponds to usbInfo[1], etc. If you specify
USB_DEV in Open Device it opens the next available device.

• You should call this command after calling Open Driver but before calling Open Device.

3.5.16 Get Pentium Cycle Count
This command is used to read a Pentium processor’s internal cycle counter. Pentium processors have a
32 or 64 bit register that increments every clock cycle. For example on a 1 GHz Pentium the counter
advances 1 billion counts per second. This command can be used to retrieve that counter.

Parameters Struct:
typedef struct {

short rightShift – number of bits to shift the results to the right (dividing by 2)
} GetPentiumCycleCountParams;

Results Struct:
typedef struct {
 unsigned long countLow – lower 32 bits of the Pentium cycle counter
 unsigned long countHigh – upper 32 bits of the Pentium cycle counter
} GetPentiumCycleCountResults;

Notes:

• Only call this function if you are sure your code is running on a Pentium processor.
• As the Pentium counter increments every clock cycle and the rate depends on the CPU clock rate,

if you want to use this command for generating precise delays you’ll need to calibrate the counter
over a period of time like 1 or 10 seconds.

Santa Barbara Instrument Group Universal Driver Application Note

 Page 28

• As the Pentium clock rates ate quite high (typically hundreds of Megahertz or higher) this
counter has much higher resolution than most programs need. Furthermore the 64-bit result can
be cumbersome. Setting the rightShift item in the parameters allows reducing the resolution.
For example on a 1 GHz Pentium setting the rightShift to 10 divides the results by 210 or 1024
returning a good approximation to a 1 microsecond timer that overflows the countLow only once
every 4295 seconds.

3.5.17 RW USB I2C
This command is used read or write data to the USB cameras I2C expansion port.

Parameters Struct:
typedef struct {
 unsigned char address – Address to read from or write to
 unsigned char data – Data to write to the external I2C device, ignored for read
 MY_LOGICAL write – TRUE when write is desired , FALSE when read is desired
 unsigned char deviceAddress – Device Address of the I2C peripheral
 } RWUSBI2CParams;

Results Struct:
typedef struct {
 unsigned char data – Data read from the external I2C device
 } RWUSBI2CResults;

Notes:

• This command is typically called by SBIG code in the Universal Driver. If you think you have
some reason to call this function you should check with SBIG first.

3.5.18 Bit IO
This command is used read or write control bits in the USB cameras.

Parameters Struct:
typedef struct {
 unsigned short bitOperation – 0=Write, 1=Read

unsigned short bitName – 0=Read Power Supply Low Voltage, 1=Write Genl. Purp. Bit 1,
2=Write Genl. Purp. Bit 2, 3=Read Genl. Purp. Bit 3

 MY_LOGICAL setBit - 1=Set Bit, 0=Clear Bit
 } BitIOParams;

Results Struct:
typedef struct {
 MY_LOGICAL bitIsSet - 1=Bit is set, 0=Bit is clear
 } BitIOResults;

Notes:

• On the ST-L camera you can use this command to monitor whether the input power supply has
dropped to the point where you ought to warn the user. Do this by issuing a Read operation on
bit 0 and if that bit is set the power has dropped below 10 Volts.

Santa Barbara Instrument Group Universal Driver Application Note

 Page 29

4. Windows Based Utility Programs
This section describes several Windows based tool programs that SBIG provides to help you get your
custom application up and running.

4.1 SBIGDriverChecker.exe
This program checks the drivers installed on the system against the “SBIG Driver” directory. It reports
whether the drivers installed are current and allows you to download the latest drivers from SBIG’s
Servers with the Download button then update all drivers with the Update button. Please read the
“Installing USB.pdf” and note that you should distribute this program and the SBIG Drivers directory
with your code so users can install the latest drivers. The latest version and the associated drivers can be
downloaded from the Software Downloads page of our home pag.
 This utility needs to be run in Administrator mode on NT/2000/XP machines and depends on the
SBIG Drivers directory being in the same directory as the utility. Also note that if you try to run this
program from your installer and you get the error message “Could not find the SBIG Drivers” it’s
because the Installer is not setting the current working directory to the utility directory. You can get
around this if you pass this program a command line argument with the full path to the utility. For
example if these items are installed into the “C:\Program Files\My Company\My Program” directory
pass the SBIGDriverChecker.exe utility “C:\Program Files\My Company\My
Program\SBIGDriverChecker.exe” without the quotes as the command line argument.
 The program usually requires user intervention to update the drivers, which we feel is the safest
way to go. You can however pass the program the “/s” command line argument in which case it will run
in “silent” mode and automatically update the drivers and then exit.

4.2 EthSim.exe
The EthSim.exe tool allows you to simulate various model cameras on an Ethernet network. This is
handy for testing your programs without a camera. To use EthSim do the following:

• Copy the EthSim.exe program and your Test Program to computers connected together
through an Ethernet LAN. The two programs can run on two different computers or the same
computer so long as that computer has Ethernet. You can use CCDOPS as the Test Program.

• Double-click the EthSim icon or run EthSim.exe from the command line. EthSim takes an
optional command line parameter specifying the type of camera to simulate. For example, to
simulate an ST-2K you would run:

 ethsim 2K

 with no command line parameter it defaults to an ST-7.
• Select Ethernet for the Comm link and enter the IP address of the computer running

EthSim.exe
• Establish a link to the simulated camera

EthSim will generate random pixel data for both the Imaging and Tracking CCDs and simulates the
following types of cameras:

ST-5C, ST-237, ST-237A, ST-7, ST-8, ST-9, ST-10, ST-1K, ST-2K, STL-11K and ST-402

4.3 SBIGUDRVJournalRx.exe
The SBIGUDRVJournalRx.exe tool is used in conjunction with the DCP_CALL_JOURNAL_ENABLE
Driver Control Parameter of the Set Driver Control command. When that parameter is set TRUE the
driver broadcasts API calls. SBIGUDRVJournalRx.exe receives and displays those broadcasts. The
broadcasts essentially tell you the sequence of API calls made to the driver.

Santa Barbara Instrument Group Universal Driver Application Note

 Page 30

 SBIGUDRVJournalRx has a scrolling window that shows the API call sequence. In addition the
program has the following controls:

• Clear – Clicking this button clears the log window
• Filters – Clicking this button brings up a dialog that allows you to filter out any or all of the API

calls from the displayed log window.
• Show Log – Uncheck this button to disable the display of API calls
• Send Msg – Clicking this button simulates a broadcast from the driver to the program using the

WParam and LParam data entry boxes. Each time you click this button a message should appear
in the log.

Finally note that if you are not receiving API broadcasts messages from the driver it is probably because
you did not enable journaling with the Set Driver Control command. Just for reference CCDOPS does
not enable them.

4.4 SetClock.exe
This 16-Bit windows program, which you can distribute with yoru Application if you find it useful, reads
the CMOS clock on the PC and sets the Windows System time to that value. It can take up to 1 second
to synchronize the clocks as it waits till the CMOS clock hits the second mark. Typically you would
spawn this program at the end of the readout on a Parallel camera on Windows 95/98/Me based systems
to adjust for the seconds lost while interrupts were disabled for the readout.

4.5 GetPortD.exe
This 16-Bit DOS program is used to determine the I/O address of the LPT ports on Windows 95/98/Me
based systems. It reads the LPT address information from DOS, displays the address of the three LPT
ports and creates a binary file named PORTADDR.DAT containing those addresses. We uses this to
allow the user to select “LPT1, LPT2 or LPT3” instead of the I/O address for the Parallel port. Spawn
this program, then open and read three unsigned shorts from the PORTADDR.DAT file. The first is the
I/O address of LPT1, the second LPT2 and the third LPT3. You then pass this information to the Open
Device command.

5. Supporting New Cameras and Accessories
This section gives specific instructions about how to support relatively new model cameras and
accessories starting with the ST-L.

5.1 Supporting the ST-L
The ST-L (Large Format Camera) is a USB 1.1 based camera much like the USB version of the
ST-7/8/… with the following significant differences:

• There are several models of the ST-L with various imaging CCDs. These include the 11
Megapixel ST-L-11K with the Kodak KAI-11000 and various other models. While there is only
a single cameraType (STL_CAMERA) returned by the Establish Link command, the Get CCD
Info command returns the appropriate pixel information (pixel size and number of pixels) and
the name includes the model type.

• The camera has an internal 5-position filter wheel referred to as the CFW-L. The carousel allows
using 2-inch diameter filter substrates or filters mounted in 48mm cells. To support the CFW-L
use the new CFW Command described in Section 2.4.9. Unlike the CFW-8, the CFW-L actually
detects erroneous moves and reports those back via the CFW command. In addition the CFW-L
is self-calibrating on power-up but can be recalibrated at any time with the CFW command.

Santa Barbara Instrument Group Universal Driver Application Note

 Page 31

• The ST-L firmware does not support generating pulses out the CFW port. The Universal Driver
will redirect Pulse Out commands to the internal CFW-L making the CFW-L mimic a CFW-8.
This allows CFW-8 software to work with the CFW-L but you really should add support for the
CFW-L with the CFW command described in Section 2.4.9.

• Like the USB ST-7/8/… the ST-L contains an internal tracking CCD. At this time the internal
tracking CCD is a TC-237 but you should depend on the results of the Get CCD Info command
when deciding how to handle the tracking CCD.

• The ST-L also supports an optional plug-in External Guider. The external guider is a cooled
TC-237 based camera with shutter for taking dark frames. The pixel details of the external
guider are the same as the internal tracking CCD and are returned by the Get CCD Info
command. To utilize the external guider use the CCD_EXT_TRACKING enum value in the ccd
entry of the command like Start Exposure, End Exposure, Readout Line, etc.

• Since the External Guider is no longer in a fixed orientation relative to the imaging CCD you
will need to maintain two separate sets of Tracking Calibration Vectors if your software supports
guiding.

• The External Guider’s cooling is open loop and is either on of off. It mimics the main cooling in
that it is off only when the main cooler is at off. Otherwise it is on. You don’t need any special
command for dealing with the external cooling.

• The External Guider’s shutter mimics the internal shutter with respect to the Start Exposure
command. When the internal shutter is asked to open the external shutter opens, etc. If however
you are using the Miscellaneous Control command for shutter control there are separate
commands for the internal and external shutters.

• The ST-L runs off a single external 12V power supply. The ST-L’s internal power supply
monitors the voltage level into the camera and has several stages of warning and protection as
that voltage gets reduced. Below 11 Volts a warning light on the side of the camera comes on.
Below 10 volts a second warning light comes on. This condition can be detected in software
using the Bit IO command described in Section 2.5.17. Below 9 volts a third warning light
comes on and power to the TE cooler is limited. You should monitor the voltage periodically
with the Bit IO command and warn the user when there is a transition from above 10V to below
10V.

5.2 Supporting the Single Shot Color Cameras
SBIG has recently introduced the model ST-2001XCM camera, which unlike all our previous cameras,
contains a color CCD. With Color CCDs each group of four pixels contains 2 Green pixels, a Red pixel
and a Blue pixel arranged in a matrix as show below:

In the literature this is called a “Bayer Pattern” or “Color Filter Array” (CFA). You can tell whether a
particular camera contains a color CCD by looking for “Color” in the name item returned by the Get
CCD Info command.

As you readout the data from a color CCD using the Readout Line command, even rows (0, 2, 4) start
with a Blue pixel and alternate between Blue and Green. Odd rows (1, 3, 5) start with a Green pixel and
alternate between Green and Red. For sub-frame readout, if you start at an even row and even column
this will still be true. Otherwise the matrix will be offset by one horizontally or vertically.

Santa Barbara Instrument Group Universal Driver Application Note

 Page 32

To make a full resolution RGB image you can interpolate pixels. For example to calculate a Green value
at the position of a Blue or Red pixel you could average the four Green pixels above, below, to the right
and to the left. Calculating a Red or Blue value at a Green position could be done using an average of
the Left and Right pixels, etc. Simple algorithms like this seem to work well for Astrophotos but tend to
show a “zipper effect” along color edges. If you want to read about other color extraction algorithms
search the web for “Bayer Pattern” or “CFA Demosaicing”.

Finally extracting a monochrome or Luminance image is easy if you apply to the image the 3x3 kernel
filter shown below:

1 2 1
2 4 2
 1 2 1

16
This yields the equation: L= (R + 2G + B) / 4.

5.3 Supporting the ST-402 Camera and CFW-402 Filter Wheel
In September of 2004 SBIG introduced the ST-402 camera to replace the out of production ST-237A and
ST-5C camera models. The ST-402 is a small (4 x 5 x 2.5 inches) single-CCD camera based on the
KAF-0402ME CCD with 765 x 510 9-micron square pixels. Like the ST-237/ST-5C the camera has an
optional internal 4-position Color Filter Wheel (CFW-402) with Red, Green, Blue and Clear filters.
Additionally, the camera has a USB 2 interface (backwards compatible with USB 1.1) that offers
downloads rates 3 times as fast as the USB 1.1 versions of the ST-7.

Supporting the ST-402 in software is quite simple and works like every other USB camera in that regard.
It acts just like an ST-7 with only an Imaging CCD and with an optional CFW-402 Color Filter Wheel.
As with the ST-7, shutter control is through the Start Exposure command. Additionally the CFW-402
is supported by the CFW command with the cfwModel set to CFWSEL_CFW402. Additionally the
Red, Green, Blue and Clear filters being positions are represented by CFWP_1 through CFWP_4
respectively.

5.4 Supporting the CFW-10 Color Filter Wheel
In September of 2004 SBIG introduced the CFW-10 Color Filter Wheel. The CFW-10 hold up to ten
1 ¼ inch filters in threaded Filter Cells. The CFW-10 interfaces to the USB ST-7 series cameras through
those cameras I2C-Aux port, drawing power and control from that port. Optionally the CFW-10 can be
used with older Parallel port based cameras or non-SBIG cameras with an external 12V power supply
and control via RS-232.

When attached to the USB ST-7 series of cameras the CFW-10 can be controlled with the Universal
Driver’s CFW command the cfwModel set to CFWSEL_CFW10. For RS-232 based control of the
CFW-10 set the cfwModel to CFWSEL_CFW10_SERIAL and don’t forget to call the
CFWC_OPEN_DEVICE and CFW_CLOSE_DEVICE commands to open and close the PC’s COM
port. Finally, filter positions 1 through 10 are represented by the CFWP_1 through CFWP_10
constants.

6. Revision History
This section details the recent changes to this specification and supporting software since the initial
release of the ST-7 Driver.

Santa Barbara Instrument Group Universal Driver Application Note

 Page 33

Changes Incorporated in Version 1.90
• Added support for the PixCel255.
• Added a response to the EstablishLink command that reports the type of camera found.
• Renamed the main function SBIGUDrvCommand() from ST7Command() since it now

supports the PixCel255 in addition to the ST-7/8.
• Added the new Error Code Unknown Camera.
• Added several ABG rates to the abgState item in the Start Exposure command.
• Added status results to the Pulse Out command that reports the current filter in position in the

PixCel255.
• Added a type 3 request to the Get CCD Info command to report data on the PixCel255

vane/filter wheel configuration.

Changes Incorporated in Version 1.96
• Renamed ST-5C to PixCel255.
• Set PixCel255 e-/ADU based upon production hardware.

Changes Incorporated in Version 2.1
• Made 32 bit version available for Windows 95.
• Added the Open Driver and Close Driver commands.
• Added Driver Not Found, Driver Not Open and Driver Not Closed error codes for Open

Driver and Close Driver functions.
• Added the Nx1, Nx2 and Nx3 readout modes for the ST-7/8
• Added the 1x1, 2x2 and 3x3 off-chip binning modes for the ST-7/8

Changes incorporated through Version 2.6
• Added support for the PixCel237 and the AO-7.

Changes incorporated through Version 2.70
• Added the AO Delay command for generating millisecond level delays.
• Added the End Readout command for preparing the CCD for the idle state.
• Added the ability to Freeze the TE Cooler for readout through the Set Temperature

Regulation command.
• Added the REGULATION_FOZEN_MASK bit to the enabled field of the Query

Temperature Status command results for detecting whether the TE cooler is frozen.

Changes incorporated through Version 3.3
• Added the Open Device and Close Device commands.
• Added support for the ST-9
• Added support for the ST-10
• Added support for the ST-1K
• Added support for an OEM version of the STV with Parallel Port
• Added support for the ST-237A

Changes incorporated through Version 4.0
• Added the START_SKIP_VDD option to the ccd item of the Start Readout command for higher

imaging throughput.
• Changed calling convention to “stdcall” for compatibility with Visual C++ and Visual Basic.
• Changed calling struct member alignment to the default 8 bytes for compatibility.
• Made a single function callable from Windows 9X and Windows NT/2000/XP, using

SBIGUDrvCommand() to replace ParDrvCommand() and ParDeviceCommandNH().
• Calls to Open Device and Close Device are now required.
• Added support for the USB and Ethernet based cameras and accessories.

Santa Barbara Instrument Group Universal Driver Application Note

 Page 34

• Removed the port information from the CC_ESTABLISH_LINK command and added it to
the CC_OPEN_DEVICE command for compatibility with multiple hardware interfaces.

• Added the CC_GET and CC_SET_DRIVER_HANDLE commands for supporting multiple
cameras per application.

• Added documentation for the Get US Timer, Set IRQL, Get IRQL commands.
• Added the Get Line, Get Link Status, Start Readout and Get Error String commands.
• Changed the minimum ST-7/8/9/10/1K exposure from 0.11 seconds to 0.12 seconds.

Changes incorporated in Version 4.1
• Added readoutMode 9 with 9x9 binning to the ST-7/8/etc for faster focus mode throughput.

Changes incorporated in Version 4.2
• Added support for the KAI2000 (ST-2K) and the TC-237 Tracking CCD
• Added requests 4 and 5 to the Get CCD Info command for use with the new frame transfer

CCDs (TC237 Guider, KAI2000 Imager) when used with Start Exposure/End Exposure
commands are bypassed as is typically done with AO exposures.

• Added the SBIGDriverChecker.exe Utility for updating the drivers to the current version.

Changes incorporated in Version 4.21
• Added the Set Driver Control and Get Driver Control commands.
• Fixed a bug in the documentation where the ipAddress was ushort instead of ulong in the

Open Device command.

Changes incorporated in Version 4.22
• Added the USB AD Control command.
• Added the DCP_CALL_JOURNAL_ENABLE and DCP_IVTOH_RATIO control

parameters to the Set Driver Control command.
• Added the \Tools folder to the SBIG Universal Driver distribution with the EthSim.exe,

SBIGUDRVJournalRx.exe, GetPortD.exe and SetClock.exe utility programs included.
• Released version 1.2 of the SBIGDriverChecker program that fixes a bug where some drivers

could be installed in the wrong directory on some systems. Also removes those improperly
installed drivers.

• Fix a bug in the documentation where the SBIGUnivDrvCommand() function was misnamed.
• Fix a bug in the documentation for the Activate Relay command regarding the bits in the

command status.

Changes incorporated in Version 4.23
• Fix many grammatical and typos with the much appreciated help of Andrew Mattingly.

Changes incorporated in Version 4.24
• Documented the DCP_IVTOH_RATIO and added the DCP_USB_FIFO_SIZE device control

parameters which are Read or Set with the Get/Set Driver Control function.
• Extended the Exposure Range of the ST-2K with its Electronic Shutter from 0.12 seconds

down to 0.01 seconds.

Changes incorporated in Version 4.27

• added the Query USB command and the DEV_USB1, DEV_USB2, DEV_USB3 and
DEV_USB4 enums to the Open Device command.

Changes incorporated in Version 4.28

• Added the Get Pentium Cycle Count and RW USB I2C commands.

Changes incorporated in Version 4.29/4.30

Santa Barbara Instrument Group Universal Driver Application Note

 Page 35

• Added the CFW command.
• Added support for the ST-L Large Format Camera. This mainly involved added support for

the Remote Guiding Head CCD (CCD enum value 2)
• Added the BitIO command.

Changes incorporated in Version 4.30, 3rd Edition (Version 4.29 Build 16 of DLL)

• Made the CFW-L in the ST-L emulate a CFW-8 in the Pulse Out command.
• Added further support for the ST-L and CFW-L.
• Added support for the ST-402 camera and CFW-402 color filter wheel.
• Added the BITO_FPGA_WE sub-command to the Bit IO command.
• Added the DCP_USB_PIXEL_DL_ENABLE driver control parameter.
• Made one set of Driver Control Parameters for the driver vs. one per Handle.
• Added the CFWSEL_AUTO select code for the CFW command.

Changes incorporated in Version 4.30, 4th Edition (Version 4.30 of DLL)

• Added the DCP_HIGH_THROUGHPUT driver control parameter.
• Allow 6 positions with the CFW-8 in the CFW command to support third party Color Filter

Wheels that mimic the CFW-8 but have 6 filters.

Changes incorporated in Version 4.35

• Documented the Update Clock function as inoperable.
• Add a new Section 2 describing the particulars of the Windows, Macintosh OSX and Linux

versions of the library.
• Added the USB Loader Request to the Get Driver Info command for returning information

about the USB Loader driver.
• Corrected the documentation regarding the ST-L’s external shutter in the Remote Tracking

Head via the Miscellaneous Control command. While the external shutter mimics the
internal shutter for the Start Exposure command it does not with the Miscellaneous Control
command. There you use separate control codes to affect the external shutter.

Changes incorporated in Version 4.37

• Added support for millisecond exposures with Interline CCD cameras like the ST-2K,
STL-11K and STL-4020. See the Start Exposure and Get CCD Info commands.

• For Single Shot Color cameras like the ST-2001XCM the name item in the Get CCD Info
command contains the word “Color”. You can use this to detect whether to treat the data as
Color or Monochrome for example.

• Added the DCP_VDD_OPTIMIZED parameter to the Get/Set Device Control commands.
• Fixed a bug where the DLL would not load under Windows 95.
• Added support for Trigger In capability with USB cameras. See the Start Exposure

command.
• Added support for the very old CFW-6A to the CFW command.
• Added section 5.2 regarding Color CCDs.

Changes incorporated in Version 4.40

• Fixed a bug where CB_CCD_TYPE_FRAME_TRANSFER wasn't getting set for the
STL-11K and STL-4020.

• Auto-select the USB driver (Standard or Alternate) based upon establishing a link.
• Added support for the KAI-2020 CCD version of the ST-2K
• Fixed a bug that would cause bright lines every 256 line in TDI mode.

Santa Barbara Instrument Group Universal Driver Application Note

 Page 36

• Added the DCP_AUTO_AD_GAIN device control parameter.
• Added support for the STL-1301 model of the Large Format camera.
• Refer to the ST-402 by it’s proper name instead of the development name (ST-F).

Changes incorporated in Version 4.42

• Added documentation for the ST-402, CFW-402 and CFW-10 products.

Changes incorporated in Version 4.42, 2nd Edition

• Refer to the CFW-402 instead of the development name CFW-F.

Changes incorporated in Version 4.42, 3rd Edition

• Expanded the documentation for the CFW Command including support for the
CFWC_OPEN_DEVICE and CFWC_CLOSE_DEVICE sub-commands required for RS-232
control of the CFW-10.

Changes incorporated in Version 4.43

• Brought Linux and Macintosh drivers up to parity with the Windows version and released all
as Version 4.43.

• No changes to API or documentation. Bug fixes in drivers only.

