
SBIG
ASTRONOMICAL
INSTRUMENTS

SANTA BARBARA INSTRUMENT GROUP
147-A Castilian Drive
Santa Barbara, CA 93117
Phone (805) 571-SBIG (571-7244) FAX (805) 571-1147
e-mail:sbig@sbig.com home page:www.sbig.com

Page 1

SBIG Class Library
Version 1.31

February 12, 2011

Introduction
In order to help customers write custom software for SBIG cameras we are publishing a set of C++
classes in source form. These classes link with the SBIG Universal Driver/Library and remove the
burden of having to write a lot of software to perform basic camera control and image acquisition with
SBIG’s cameras. Highlights include:

• CSBIGCam class encapsulates camera behavior and supports all Parallel and USB based
cameras. It supports up to four active cameras at one time.

• CSBIGImg class encapsulates image acquisition and supports reading and writing of SBIG
Compressed and Uncompressed images (Type 3).

• CSBIGImg class has compile time option that can read and write FITS files in conjunction with
NASA-Goddard’s CFITSIO library.

• Both classes are platform agnostic using all standard library functions and have been tested under
Windows, Mac OSX and Linux.

The CSBIGImg Class
The CSBIGImg class is stand-alone, having no dependencies on other classes other than the Standard
Library string class. The class is implemented in the csbigimg.cpp and csbigimg.h files. All class
member variables are private and accessed through accessor functions. The class methods are
discussed individually below:

Constructors/Destructors
CSBIGImg() – Standard constructor. Initializes all member variables but allocates no image buffer.
CSBIGImg(height, width) – Alternate constructor that allocates an image buffer of the passed size.
~CSBIGImg() – Standard destructor, frees any allocated image buffer.

Buffer Access
GetImagePointer() – Returns a pointer to the 16-bit (unsigned short) image buffer. The buffer is

exactly height * width pixels in length. Images are stored along a row whereby pixel(column,
row) is at GetImagePointer()[row*width + column];

GetHeight()/GetWidth() – Return the size of the image buffer.
AllocateImageBuffer(height, width) – Deletes then allocates an image buffer of the passed size.
DeleteImageData() – Deletes the image buffer. Typically you can allow the destructor to do this or if

reallocating image buffers the AllocateImageBuffer() to do it.

Image Storage/Retrieval
Get/SetImageModified() – Indicates whether the image data has been modified since it was last saved.
GetFileErrorString() – Returns a string describing any file errors.
OpenImage(path) – Reads SBIG Compressed and SBIG Uncompressed format images from the

passed path, returning an error code. If INCLUDE_FITSIO is set it also reads FITS format
images in accordance with the SBIGFITSEXT Specification, Version 1.0.

 SBIG Class Library Documentation Page 2

SaveImage(path, format) – Saves image in the passed path using the passed format. Supports SBIG
Compressed, SBIG Uncompressed and if INCLUDE_FITSIO is set supports FITS with CFITSIO
Library. Returns an error code. SBIG Images are in conformance with the Type 3 specification.
FITS files are 16-bit and written in accordance with the SBIGFITSEXT Specification, Version
1.0.

Image Processing
AutoBackgroundAndRange() – Sets the background and range member variables based upon the

histogram of the pixel values. Does not modify pixel values. This is the same algorithm used by
CCDOps and works well with most astronomical images.

DarkSubtract(pImg) – Subtracts one image from another. This is handy for removing the effects of
dark current and fixed pattern noise.

FlatField(pImg) – Flat fields one image against another. This is handy for removing the effects of non-
uniform illumination or vignetting.

GetAveragePixelValue() – Returns the average pixel value in the passed rectangle or the entire image.
HorizontalFlip() – Flips the image about the center column.
VerticalFlip() – Flips the image about the center row.
RemoveBayerColor() – This takes raw images from Color CCD Images (like those produced with the

ST-2000XCM) and converts them to monochrome by blending the Red, Green and Blue pixels.

Accessor Functions
These functions allow access to the private class member variables. You typically don’t need to call
them yourself as the CSBIGCam class sets them for you when acquiring data.

Get/SetApertureArea() – The aperture area in square inches as saved in SBIG header.
Get/SetBackground/Range() – The background or black level and range as saved in SBIG header.
Get/SetBinning() – Horizontal and vertical binning used to acquire the image.
Get/SetCameraModel() – Name of the camera model used to acquire the image.
Get/SetCCDTemperature() – CCD Temperature in Degrees C when image acquired.
Get/SetDefaultImageFormat() – The format to save images in should you ask the SaveImage()

function to save in the Default format.
Get/SetEachExposure() – For multiple exposures the length of each exposure in seconds.
Get/SetEGain() – The electronic gain of the camera in electrons/ADU.
Get/SetExposureState() – The exposure state (ABG, Correlated Double Sampling, etc.) for the image.
Get/SetExposureTime() – The total exposure length in seconds.
Get/SetFilter() – The name of the optical filter used.
Get/SetFocalLength() – The camera lens or telescope focal length in inches.
GetFormattedImageInfo(string, format) – Returns a string based description of the information

contained in the image header/member variables. Allows both Text and HTML formats.
Get/Set/AddHistory() – A string of characters codes representing modifications made to the image.
Get/SetImageCanClose() – Allows the background image acquisition processes to stop images from

being closed which data acquisition is in process.
Get/SetImageModified() – Returns TRUE if the image has been modified since it was last saved.
Get/SetImageNote() – A text based comment attached to the image.
Get/SetImageStartTime() – GMT when the light frame was started. Several overloaded Set methods

are available. Set with no parameters sets it to the current time.
Get/SetNumberExposures() – For multiple exposures the total number of exposures.
Get/SetObserver() – The observer’s name.
Get/SetPedestal() – Any constant pedestal value removed from each pixel to stop overflow.

 SBIG Class Library Documentation Page 3

Get/SetPixelHeight/Width() – Pixel dimensions in mm (not microns).
Get/SetReadoutMode() – The readout modes used to acquire the data.
Get/SetResponseFactor() – CCD calibration factor between electrons and 0th magnitude.
Get/SetSaturationLevel() – The maximum ADU that the camera can produce.
Get/SetSoftware() – Name of the software acquiring the images.
Get/SetSubFrame() – For sub-frame images the upper-left corner of the image, 0 based.
Get/SetTrackExposure() – For self-guided images, the tracking exposure in seconds.

FITS Only Accessor Functions
These are only available when built with the INCLUDE_FITSIO compile time option and are for
creating header entries for the FITS files. The class is implemented in the csbigcam.cpp and
csbigcam.h files.

Get/SetApertureDiameter() – The telescope aperture diameter in inches.
Get/SetFITSObject() – The name of the object.
Get/SetFITSTelescope() – Description of the telescope.
Get/SetAdditionalFITSKeys()- Allows adding additional FITS header keys to the image. These are

parsed when a FITS image is read and rewritten when it is saved.

The CSBIGCam Class
The CSBIGCam class depends on the CSBIGImg class for image acquisition and also uses the Standard
Libraries string class. All class member variables are private and accessed through accessor functions.
The class methods are discussed individually below:

Constructors/Destructors
CSBIGCam() – The standard constructor, initializes all member variables but doesn’t assign a port

(LPT, USB, etc) to the camera.
CSBIGCam(device type) – Alternate constructor whereby the SBIG Universal Driver/Library is

opened and the passed device is opened. This works with USB and LPT ports where you don’t
have to specify the port address but wont work with Ethernet. Use the other alternate constructor
below for Ethernet. As constructors return no values use the GetError() method to see if the
Open Driver and Open Device calls were successful. This does not try to establish a link to the
camera which is done separately with the EstablishLink() method described below.

CSBIGCam(OpenDeviceParams) – Second alternate constructor like the one above except by passing
the OpenDeviceParams you can specify the LPT base address or Ethernet IP address. Don’t
forget to use the GetError() method to see if the opens worked.

~CSBIGCam() – Standard destructor. Closes the device and the driver in case they were left open.

Error Reporting Functions
GetError() – Returns an error code for the last error that occurred in the calling the class methods.
GetErrorString(err) – Returns an error string for the passed error code.
GetErrorString() – Returns an error string for the last error that occurred.
GetCommand() – Returns the last command issued that generated an error.

High Level Data Acquisition Functions
GrabImage(image pointer, dark frame) – The main data acquisition routine that acquires an entire

image. Allocates the image buffer and acquires the image from the active CCD using the set
readout mode, exposure, etc. Based upon the passed parameter acquires a dark frame, a light
frame or a dark subtracted light frame. This routine is synchronous meaning it hangs until the
image acquisition is complete or an error occurs. Returns an error code.

 SBIG Class Library Documentation Page 4

GrabSetup(image pointer, dark frame) – For asynchronous image acquisition through the use of
threads call this function to prepare to grab an image.

GrabMain(image pointer, dark frame) – For asynchronous image acquisition through the use of
threads call this function to start the image acquisition.

GetGrabState() – Call this function to monitor the progress of the asynchronous GrabMain() function.

Mid Level Data Acquisition Functions
DumpLines(noLines) – Dumps the passed number of lines on the active CCD in the set readout mode,

returning an error code.
IsExposureComplete(&complete) – Checks to see whether an exposure on the active CCD is

complete, returning an error code.
ReadoutLine(ReadoutLineParams, dark subtract, data pointer) – Reads out a row of data based

upon the passed parameters, returning an error code.
StartExposure(shutter state)/EndExposure() – Starts or stops an exposure on the active CCD of the

set exposure time and passed shutter state, returning an error code.
StartReadout(StartReadoutParams)/EndReadout() – Starts or stops the readout of the active CCD

after the exposure is complete, returning an error code.

General Purpose Functions
ActivateRelay(relay, time) – Activates the passed relay for the passed time or cancel all relay

activations of the time is zero, returning an error code.
ADToDegreesC(ad, ccd=TRUE) – Converts the passed temperature sensor A/D reading to degrees C

for the CCD or Ambient thermistor.
AOTipTilt(AOTipTiltParams) – Passes the passed parameters on to the AO, returning an error code.
CFWCommand(CFWParams, &CFWResults) – Passes the passed parameters on to the CFW,

returning an error code.
CheckLink() – Returns TRUE if a link has been established or can be establish to a camera.
EstablishLink() – Tries to establish a link to a camera, returning an error code. Use the

GetCameraType() method to see what type of camera was found.
IsRelayActive(relay, &active) – Sets the active parameter TRUE if the passed relay is active, returning

an error code.
QueryTemperatureStatus(&enabled, &ccdTemp, &setpointTemp, &percentTE) – Queries the

status of the temperature control in the camera, setting the passed parameters accordingly and
returning an error code.

InitializeShutter() – Initializes the shutter in the camera, returning any error code..

Accessor Functions
These functions allow access to the private class member variables and the camera state data. You’ll
typically call these to configure the camera prior to data acquisition.

Get/SetABGState() – For cameras with variable ABG this method controls it or reports its setting.
Get/SetActiveCCD() – Select the Imaging, Tracking or External Tracking CCD for cameras that

support it.
GetCameraType() – Returns a camera type code for the camera found on the EstablishLink() method.
GetCameraTypeString() – Returns a string describing the type of camera found.
GetCCDTemperature(&temperature) – Returns the CCD temperature in the passed parameter,

returning an error code.
GetCommand() – Returns the last command issued to the SBIG Universal Driver/Library.

 SBIG Class Library Documentation Page 5

GetDriverInfo(request, GetDriverInfoResults0) – Returns the results of the passed request in the
passed results parameter, returning an error code.

Get/SetExposureTime() – Controls the exposure time in seconds.
GetFullFrame(&width, &height) – Returns in the parameters the full size of the active CCD in the

current readout mode, returning an error code.
Get/SetReadoutMode() – Controls the readout mode used in the GrabImage() and other methods.
Get/SetSubFrame(left, top, width, height) – Controls the coordinates of sub-frames used in the

GrabImage() method. Setting the height or width to zero uses the full frame.

Low Level SBIG Universal Driver/Library Functions
OpenDevice(OpenDeviceParams)/CloseDevice() – Opens or closes a device, returning an error code.

Can be called automatically by the alternate constructors and if called manually must be after a
call to the OpenDriver() method.

Open/CloseDriver() – Opens or closes the SBIG Universal Driver/Library, returning an error code.
Can be called automatically by the alternate constructors.

SBIGUnivDrvCommand(command, *params, *results) – A catch-all method to make calls directly
to the SBIG Universal Driver/Library, returning an error code.

High Level CFW Suoport Functions
Get/SetCFWModel() – Use to set or retrieve the model CFW you wish to control.
SetCFWPosition() – Use to position the CFW.
GetCFWPositionAndStatus() – Returns the CFW’s current position and status.
GetCFWMaxPosition() – Returns the number of positions that the CFW supports.
GetCFWError() – Returns any error condition that occurred at the CFW.
GetCFWErrorString() – Returns a string describing the error that occurred at the CFW.

Sample Programs
See the main.cpp file for a small sample program using the Class Library. Once you get used to the
Class Library you’ll be able to write fairly complicated image acquisition programs in a short period of
time. In fact the following 5 lines are all you need to acquire an image and save it on disk:

pCam = new CSBIGCam(DEV_USB);
pImg = new CSBIGImg();
pCam->EstablishLink();
pCam->GrabImage(pImg, SBDF_LIGHT_ONLY);
pImg->SaveImage(“MyImage.sbig”, SBIF_COMPRESSED);

Also, the sbig2fits.cpp program is an incredibly simple yet powerful user contributed application of the
Class Library where in only a few lines you can write a SBIG to FITS file format converter.

Finally, if you have any suggestions about how we can improve the Class Library please send us your
comments. We always like to hear from you and we take making your life easier as part of our job.
References

• From the SBIG Developers Web Page <http://www.sbig.com/sbwhtmls/devswframe.htm>
o “SBIG Type 3 Image File Format”, December 1, 2004
o “SBIGFITSEXT Version 1.0”, March 19, 2003
o “SBIG Universal Driver/Library”, Version 4.43, January 11, 2005

• NASA-Goddard
o <http://heasarc.gsfc.nasa.gov/docs/software/fitsio/fitsio.html>

